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Abstract: Quantum entanglement is essential for some applications of quantum information 

processing such as quantum cryptography, quantum teleportation and superdence coding. A 

qubit is a two level quantum system and four two−qubit entangled states called Bell states can 

be easily obtained for two−qubit states. A qutrit is a three level quantum system and Zeeman 

levels of spin−1 electron or nucleus can be referred as qutrit. For SI (S=1, I=1) spin system 

there exist nine two−qutrit states. So nine two−qutrit entangled states can be obtained by using 

the Hadamard and CNOT logic gates. In this study by considering N
+
@C60 molecule as SI 

(S=1, I=1) spin system, two−qutrit entangled states are also obtained by using the magnetic 

resonance selective pulse sequences of Hadamard and CNOT logic gates. Then it is shown that 

these entangled states can be transformed into each other by the suggested transformation 

operators. 

 
1. Introduction 

Quantum information has a great interest in different areas such as physics, mathematics and computer 

science and engineering as the new technologies are expected in computing, cryptography and 

communication [1−3]. In these technologies qubits or qutrits (in general qudits) will be used instead of 

bits [3,4]. Quantum entanglement is essential for some applications of Quantum Information 

Processing (QIP) such as superdence coding, quantum cryptography and quantum teleportation [5]. In 

quantum entanglement there is a correlation between the quantum states of entangled particles. For SI 

(S=1/2, I=1/2) spin system two−qubit entangled states are obtained and they are called Bell states [6]. 

 In this study, first two−qutrit entangled states are introduced in section 2. Then, in section 3, two 

qutrit entangled states are also obtained by using magnetic resonance selective pulse sequences for SI 

(S=1, I=1) spin system. In section 3, transformations of two qutrit entangled states into each other are 

also achieved by using suggested transformation operators. 

 

2. Theory 

A qutrit is a three level quantum system. As shown in Table 1, Zeeman levels of spin−1 electron or 

nucleus are referred as qutrit [4]. The matrix representation of one qutrit Hadamard gate can be written 

as [7] 
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  . By applying this Hadamard gate, superpositions of single qutrit states 

are found as given in Table 2.  
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Table 1. Single qutrit states for spin−1. 
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Table 2. The superpositions of single qutrit states. 

qutrit, a  a  

0  ( 0 1 2 ) / 3   

1  2( 0 1 2 ) / 3c c   

2  2( 0 1 2 ) / 3c c   

 
 For two spin−1 system such as SI (S=1, I=1) spin system, nine two-qutrit states of  

00 , 01 , 02 , 10 , 11 , 12 , 20 , 21
 
and 22

 
are obtained by direct products of single qutrit states. 

Two qutrit CNOT gates can be found by using the ternary addition of qutrit states: 

  ( ) , , , (2a)aCNOT T a b a b a   

( ) , , . (2b)bCNOT T a b a b b   

These two−qutrit CNOT gates are 9x9 matrices and they can be written in Dirac notation as following: 

 
( ) 00 00 01 01 02 02 10 12 11 10

12 11 20 21 21 22 22 20 , (3a)

aCNOT T     

   
 

( ) 00 00 01 21 02 12 10 10 11 01

12 22 20 20 21 11 22 02 . (3b)

bCNOT T     

   
 

 
 

 

 

 

Figure 1. Quantum circuit for generating entangled states. 

 

 By using the quantum circuit given in Figure 1, two−qutrit entangled states can be generated. 

Obtained two−qutrit entangled states are presented in Table 3. 

H a

b

 a b
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Table 3. Two−qutrit entangled states.  

Input qutrit, ab  Output, ab  

00  ( 00 11 22 ) / 3   

01  ( 01 12 20 ) / 3   

02  ( 02 10 21 ) / 3   

10  2( 00 11 22 ) / 3c c   

11  2( 01 12 20 ) / 3c c   

12  2( 02 10 21 ) / 3c c   

20  2( 00 11 22 ) / 3c c   

21  2( 01 12 20 ) / 3c c   

22  2( 02 10 21 ) / 3c c   

 
3. Results and Discussion 

For spin−1 electron and nucleus, magnetic quantum numbers and corresponding one qutrit states are 

given in Figure 2. Selective transitions are also shown in this figure. Selective magnetic resonance 

pulses can be used to prepare some quantum logic gates. Modified matrix representation of some 

selective pulse operators for spin−1 is as follows [8]: 
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Figure 2. Magnetic quantum numbers and corresponding one qutrit states with selective transition for 

spin-1. 

 

 N
+
@C60 molecule can be considered as SI (S=1, I=1) spin system [9−10]. In this molecule total 

electron spin of N
+
 in the ground state is 1 and nuclear spin of 

14
N is also 1 with the abundance of 

99,63%. For this spin system total Hamiltonian in an external magnetic field is 
ˆ ˆˆ ˆ ˆ . (5)S Z I Z Z ZH S I AS I    
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Where , .S B I Ig B B      Energies of the spin Hamiltonian and corresponding two-qutrit states 

for SI (S=1, I=1) spin system are presented in Table 4. 

 

Table 4. Energies of the spin Hamiltonian for SI (S=1, I=1) spin system and their two-qutrit states. 

Level 

Number SM  IM  Energy Two−qutrit state, ab  

1  1  1  S I A    00  

2  1  0  
S  01  

3  1  1  S I A    02  

4  0  1  I  10  

5  0  0  0  11  

6  0  1  I  12  

7  1  1  S I A    20  

8  1  0  S  21  

9  1  1  S I A    22  

 
 Two−qutrit entangled states can be also obtained by using magnetic resonance pulse sequences of 

Hadamard and CNOT logic gates. For the construction of entanglement for two−qutrit state of 00 , 

microwave pulse sequence  of the Hadamard gate  

 
1 7

1 4

70.52 (6)
2 x

x




 
   

 
 

should be applied. Where the numbers such as 1 , 4  and 7  represent the level number as given in 

Table 4. Matrix representation of selective microwave pulses are as following: 

     
1 4

12 1 170.52 70.52 , (7a)x E Ex
R I S I I
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Matrices used in the microwave and radio frequency pulses for spin-1 are given as following: 

1 1

0 0 1 1

1 0 0 1 0 0

0 1 0 , 0 0 0 ,

0 0 1 0 0 0

0 0 0 0 0 0

0 1 0 , 0 0 0 . (8)
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When the Hadamard pulse sequence is applied to 00  state,  

 00 00 10 20 / 3 (9)     

is obtained. Then as a CNOTa(T) logic gate, radio frequency pulse sequence 

     
7 9 4 5

(10)a x x
CNOT T  

 
   

can be applied. Where the matrix representation of selective radio frequency pulses are 
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     
4 5 0 12 0 , (11a)x E Ex

S R S S I 


      

     
7 9 1 13 1 . (11b)x E Ex

S R S S I 
        

After the application of radio frequency pulse sequence of CNOTa(T) to equation (9), entanglement of 

00  state is found: 

    00 00 11 22 / 3. (12)aCNOT T      

The entanglements of the other two-qutrit states can be also constructed by using suitable Hadamard 

and CNOTa(T) pulse sequences. For the construction of two−qutrit entangled states, all suitable 

Hadamard microwave selective pulse sequences and CNOTa(T) radio frequency pulse sequences are 

presented in Table 5. It can be shown that after the application of these pulse sequences to two qutrit 

states, the same entangled states (given in Table 3) are found. 

 
Table 5. Suitable Hadamard and CNOTa(T) pulse sequences for the entanglement of two−qutrit states. 

Two−qutrit state, ab  
Suitable H microwave pulse 

sequence 

Suitable CNOTa(T) radio frequency 

pulse sequence 

00   
1 7

1 4

70.52
2 x

x




 
 

 
    

7 9 4 5

x x
 

 
  

01   
2 8

2 5

70.52
2 x

x




 
 

 
    

7 8 5 6

x x
 

 
  

02   
3 9

3 6

70.52
2 x

x




 
 

 
    

8 9 4 6

x x
 

 
  

10   
4 7

1 4

70.52
2 x

x




 
 

 
    

7 9 4 5

x x
 

 
  

11   
5 8

2 5

70.52
2 x

x




 
 

 
    

8 9 5 6

x x
 

 
  

12   
6 9

3 6

70.52
2 x

x




 
 

 
    

8 9 4 6

x x
 

 
  

20   
4 7

4 7

70.52
2 x

x




 
 

 
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7 9 4 5

x x
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 
  

21   
5 8

2 8

70.52
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x


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 
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x x
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 
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22   
6 9

3 9

70.52
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x
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 
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 
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Weyl operators (also called d

2
 operators) can be obtained for dimension d as following [11]: 

 
21

0

mod . (13)
d i km

d
nm

k

U e k k m d




   

Where n, m=0, 1,…, d−1. For qutrits (d=3) these operators can be generated as given in Table 6. 

These operators can be called as Pauli bases for qutrits. In order to transform the two−qutrit entangled 

states between each other, transformation operators can be defined as nm EU I . For example 01 EU I  
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transformation operator can be used to transform the 01  entangled state to 02  entangled state. 

Applications of all the transformation operators to all two−qutrit entangled states can be also achieved. 

 

Table 6. Weyl operators for qutrits [11]. Where 
2

3
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c e
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2

2 *3
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
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0 0 1

1 0 0
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U
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 
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1 0 0

0 0

0 0

U c
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 
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2

0 1 0

0 0

0 0

U c

c
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0 0 1

0 0

0 0

U c
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2
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1 0 0

0 0

0 0

U c

c
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2

22

0 0 1

0 0

0 0

U c

c

 
 

  
 
 

 

 

4. Conclusion 

For SI (S=1, I=1) spin system, there exist 9 two−qutrit states. By using the matrix representation of 

one qutrit Hadamard and two−qutrit CNOT(T) gates, two−qutrit entangled states are acquired for this 

spin system. Two−qutrit entangled states are also obtained by using the magnetic resonance selective 

pulse sequences of Hadamard and CNOT(T) logic gates. In order to transform two−qutrit entangled 

states between each other, transformation operators are suggested by using the Weyl operators. Then, 

the applications of these operators are presented. 
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