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Abstract. In this work, we study the quantum Fisher information (QFI) per particle of an
open (particles can enter and leave the system) and dissipative (far from thermodynamical
equilibrium) steady state system of two qubits in noisy channels. We concentrate on two noisy
channels these are dephasing and non-dephasing channels. We will show that under certain
conditions QFI per particle is slightly greater than 1 for both systems. This means that both
systems can be slightly entangled.

1. Introduction
In quantum mechanics, it is hard to measure observables, instead we try to estimate them.
Estimating a parameter is subject of information theory. Because of that quantum mechanics
gets some tools from estimation theory to guess the parameters. Also we can design some
experiments to estimate parameters, for example Mach-Zender interferometer. It is used to
determine the relative phase shift between two collimated beams. It is well known that
entanglement can increase the sensitivity of interferometer. Quantum Fisher information (QFI)
characterizes the sensitivity of a quantum system with respect to the changes of a parameter
of the system. It can be taken as a multipartite entanglement criteria[1, 2]: If the mean
quantum Fisher information per particle of a state exceeds the so called shot-noise limit i.e.
the ultimate limit that separable states can provide, then the state is multipartite entangled.
Shot-noise limit is ∆θ ≡ 1√

N
, where N is the number of particles[3]. Only for N=2 case, any

entangled state can be made useful by local operations [4]. It is also shown that GHZ states
provide the largest sensitivity, achieving the fundamental, so called Heisenberg limit [5]. Mean
QFI determines the phase sensitivity of state with respect to SU(2) rotations. Recently the
quantum Fisher information has been further studied both theoretically and experimentally
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

Usually the natural systems are open and noisy. If a quantum system interacts with
environment it is thought as the quantum system is in a noisy channel. It is obvious that
noise decreases the entanglement of quantum system. If the system is open the decrease can be
balanced by determining a reset mechanism. With the help of reset mechanism an entangled
steady state can be established. The reset mechanism replaces randomly system particles with
particles from the environment in some standard, sufficiently pure, single-particle state [27].
Reset mechanism, itself, can not produce entanglement. To create entanglement, the fresh
particles must interact with the system. Reset mechanism requires particle exchange from the
environment, this brings that the system must be open. Hartmann et.al shown that for both
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gas type and strongly coupled quantum systems the effect of decoherence can be vanished with
the help of reset mechanism [28].

In this work, we study the quantum Fisher information per particle of open and dissipative
noisy system of two qubits with reset mechanism. We will concentrate on two different types of
noise. Firstly we take dephasing channel[29], then secondly we look at non-dephasing channel
and we try to find states whose mean QFI is greater than 1. We examine the effect of reset
mechanism for dephasing case, and for non-dephasing case we will determine a temperature
dependent parameter “s” then we will examine effect of “s” on QFI.

2. QFI of open noisy system in a steady state
Quantum Fisher information of a given quantum system can be written from [4] as;

F (ρ, J−→n ) =
∑
i6=j

2(pi − pj)2

pi + pj
|〈i|J−→n |j〉|

2 = −→nC−→n T . (1)

Here pi and |j〉 are the eigenvalue and eigenvector of state ρ respectively. Also −→n is a normalized
three dimensional vector and J−→n =

∑
α=x,y,z

1
2nασα, the angular momentum operator in −→n

direction. σα are Pauli matrices. Also, pi + pj = 0 terms are not included to summation. After
some calculations the matrix elements of the symmetric matrix C can be found as;

Ckl =
∑
i6=j

(pi − pj)2

pi + pj
[〈i|Jk|j〉〈j|Jl|i〉+ 〈i|Jl|j〉〈j|Jk|i〉] (2)

If ρ is a pure state the equation 2 is written as

Ckl = 2〈JkJl + JlJk〉 − 4〈Jk〉〈Jl〉, (3)

and the QFI is also expressed as F (ρ, J−→n ) = 4(∆J−→n )2. The mean QFI is found as in [6]

Fmax =
Fmax
N

=
λmax
N

(4)

here λmax is maximum eigenvalue of matrix C and N is the number of particles. Also λmax is
the maximum value of QFI. It has recently been shown that, the QFI for separable states is [1]

Fmax ≤ 1 (5)

and for general states the mean QFI of the system is

Fmax ≤ N (6)

where the bound Fmax = N can be saturated by maximally entangled states.
Now, we define an open quantum system with reset mechanism in a noisy channel. The total

master equation which defines the quantum system is given by [27]

ρ̇ = −i[H, ρ] + Lnoiseρ+ r
N∑
i=1

(|χi〉i〈χi|triρ− ρ) (7)

The master equation is in form of Lindbald equation. The first term in the right hand side of
eq. (7) is just about total Hamiltonian of the quantum system, the second term describes the
noisy channel and the third term describes the reset mechanism and N is the number of particle.

Lnoiseρ =
N∑
i=1

−B
2

(1− s)[σi+σi−ρ+ ρσi+σ
i
− − 2σi−ρσ

i
+] (8)

− B

2
s[σi−σ

i
+ρ+ ρσi−σ

i
+ − 2σi+ρσ

i
−]− 2C −B

4
[ρ− σizρσiz]
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Here B is inversion and C is polarization parameter. Also s is a temperature dependent parameter
which is

s = (eωβ + 1)−1 ∈ [0, 1] (9)

Since β = 1
T , when T →∞ s will be 0.5.

2.1. Dephasing Case
In this case we choose dephasing channel as a noisy channel. The Hamiltonian of two qubit
steady state is

H = g−→σ (1)
z
−→σ (2)
z , (10)

here g ≥ 0 is the coupling strength. Since the noise is a dephasing channel the second term in
equation (7) is

Lnoiseρ =
γ

2

∑
i=1,2

(σ(i)z ρσ(i)z − ρ) (11)

here γ is strength of decoherence which is a positive real number. One can get this expression
by choosing B = 0 and C = γ in equation (8). The expression of reset mechanism is written by
taking N = 2 as

Lresetρ = r
∑
i=1,2

(|χi〉i〈χi|triρ− ρ). (12)

Since the reset state should be able to produce entanglement from the resulting product state,
the reset state must be depend on the Hamiltonian. For example for our Hamiltonian we can
not choose the reset state as |χi〉i = |0〉, since the state does not create any entanglement. Then
our two qubit master equation becomes

ρ̇ = −i[H, ρ] +
γ

2

∑
i=1,2

(σ(i)z ρσ(i)z − ρ) + r
∑
i=1,2

(|+〉i〈+|triρ− ρ). (13)

When r = 0, the noise destroys the entanglement. For r →∞ case Hamiltonian and noise parts
are neglected and the reset part injects fresh particles to the system. Thus the entanglement
between two qubits will be zero eventually. ρ is the density state and it can be expressed as
matrix form. In our case it is 4x4 matrix. The matrix is written from [27],

ρ11 = ρ22 = ρ33 = ρ44 =
1

4
, (14)

ρ14 = ρ23 = ρ32 = ρ41 =
r2(r + γ/2)

4(r + γ)[2g2 + (r + γ/2)(r + γ)])
, (15)

ρ12 = ρ13 = ρ42 = ρ43 =
r(−ig + r + γ/2)

4[2g2 + (r + γ/2)(r + γ)]
, (16)

ρ21 = ρ24 = ρ31 = ρ34 =
r(ig + r + γ/2)

4[2g2 + (r + γ/2)(r + γ)]
. (17)

Here r, γ and g are reset, decoherence and coupling strength parameters respectively and they
are real parameters.

Now by using ρ matrix in equation (2) we find QFI per particle of the system depending on
parameters r, γ and g.

To understand the behavior of the QFI per particle first we fixed the noise parameter to
γ = 0.5.
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Figure 1. ( QFI per particle (blue) and negativity (green) vs reset with γ = 0.5. Red dotted
line represents the shot noise limit. Inset shows the critical point where the optimal direction
changes.)

As one can see from the figure at r = 0 the QFI of the system is 0 as expected. When r is at
14 QFI per particle has a value as 1.00226. Well known entanglement criteria is negativity and
it can take values between 0 and 1. For our entangled state negativity is 0.0496243. It means
that the chosen state is weakly entangled. When negativity is 0 the state is separable, when the
negativity equals to 1 the state is maximally entangled.

For the figure (1) (g = 2.5 and γ = 0.5 case) the optimal direction −→n o = −→n 1 when r ≤ 2.3.
For r > 2.3 the optimal direction −→n o = −→n 2sin(π2 )+−→n 3cos(

π
2 ). Here −→n 1 is unit vector in x axis.

−→n 2 and −→n 3 are unit vectors in y and z directions respectively.

2.2. Non-Dephasing Case
In this case, the noisy channel is a non-dephasing channel. In equation 7 the hamiltonian
contains free and interaction terms.

Hfree =
ω

2

N∑
i

σiz and Hint = gσ1xσ
2
x. (18)

Also in noise part we take C = B
2 and ω = B. In the light of above, one can solve the master

equation and the elements of density matrix will be

ρ11 =
B2s2w2 + (B + 2r)((B + r)g2 +B2(B + 2r)s2)

(B + r)((B + r)ω2 + (B + 2r)(4g2 + (B + r)(B + 2r)))
, (19)

ρ14 = ρ∗41
g(2sB −B − r)(−i(B + 2r) + ω)

((B + r)ω2 + (B + 2r)(4g2 + (B + r)(B + 2r)))
, (20)

ρ22 = ρ33 =
(B + 2r)((B + r)g2 −B2(B + 2r)s2 +B(B + r)(B + 2r)s)−Bs(sB −B − r)ω2

(B + r)((B + r)ω2 + (B + 2r)(4g2 + (B + r)(B + 2r)))
,

(21)

ρ44 =
(−Bs+B + r)ω2 + (B + 2r)(B2(B + 2r)s2 − 2B(B + r)(B + 2r)s+ (B + r)(g2 + (B + r)(B + 2r))

(B + r)((B + r)ω2 + (B + 2r)(4g2 + (B + r)(B + 2r)))
,

(22)
The other terms of density matrix is are 0.

Now by using the density matrix in equation (2) we find the mean QFI of the system. To
understand the effect of temperature we take s as a free parameter, it can have values between
0 and 0.5. We fix the reset parameter as r = 10 and we choose as ω = 1
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Figure 2. (QFI per particle (blue) and negativity (green) vs s with r = 10. Red dotted line
represents the shot noise limit.)

It can be easily seen that when s is greater than 0.193 mean QFI is smaller than 1 although
negativity is still greater than 0. This means that QFI does not recognize all the entangled
states.

3. Cocnlusion
We have studied the quantum Fisher information of a noisy open quantum system of two qubits
which is in a steady state. In the system we use an interaction Hamiltonian in a noisy channel
and a reset mechanism. By solving master equation we have defined density state in matrix
form and with the help of equation 2 we describe mean QFI of the system depending on reset
and noise parameters.

We have shown the change of QFI per particle depending on reset parameter. In figure 1 we
have chosen γ as 0.5 and have observed that at r = 14 QFI per particle is greater than 1. The
negativity of such state is greater than 0. It means that the state is entangled[29].

Also we take non-dephasing noisy channel as second example. At that case we take reset
parameter constant as r = 10 and we define a temperature dependent parameter s. The change
of QFI per particle depending on parameter s is investigated and figure 2 shows that until s be
0.193 QFI per particle is greater than 1. After that value of s QFI per particle is smaller than
1 although negativity is greater than 0.

These two example show us that QFI does not recognize all entangled states. Despite the
QFI is entanglement witness it can not be taken as entanglement measure.

There are some recent works on q-deformation and quantum information theory[30, 31], in
the light of these works as a further work one can calculate the QFI of q deformed version of
the states that we introduce this study.
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