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Abstract. This work deals with a statistical description of a thermally driven deconfining
phase transition (DPT) from a hadronic gas consisting of massless pions to a color-singlet Quark-
Gluon Plasma (QGP), in a finite volume. The thermodynamical approach, within a coexistence
model is used to investigate the Quantum Chromo-Dynamics DPT occurring between the two
phases, at vanishing chemical potential. Considering the color singletness condition for the QGP
phase, with massless up and down quarks, the exact total partition function of the studied system
is obtained and then employed to calculate mean values of physical quantities, well characterizing
the system near the transition. The finite-size effects on the DPT have been investigated through
the study of the thermal behavior of the order parameter, the susceptibility and the second
cumulant of the probability density. The similarity between the susceptibility and the second
cumulant representing the variance is probed for the studied DPT and a parameterization of
the variance is proposed for the first time.

1. Introduction
According to the state of the art in particle physics, the quark-lepton level is considered to be
the fundamental level. Quarks interact with each other via the strong interaction, where the
mediator bosons are the gluons [1]. The strong interaction is described through the Quantum
Chromo-Dynamics (QCD) theory, which confirms that free quarks are never observed as free
particles, but are confined inside hadrons such as the proton and the neutron. However, at
high temperatures and/or densities a hadronic matter (HM) can turn into a new state of
matter called Quark-Gluon Plasma (henceforth QGP), which is composed of the elementary
particles; quarks and gluons [2]. It is worth mentioning that the quarks and gluons are still
confined inside the plasma, but not inside hadrons, whence, the nomination “Deconfinement
Phase Transition”(DPT) from a HM phase to a QGP phase.

The study of the finite-size effects on the DPT from the strongly interacting Hadronic Gas
(HG) to the called QGP is possible through the study of several thermodynamic quantities, called
response functions, among which we cite: the order parameter, its derivatives with respect to
temperature and the cumulants of the probability density. Such a study has been performed by
one of us in previous contributions [3, 4], allowing to note a remarkable qualitative similarity
between the variations as function of temperature and volume of the order parameter derivatives
and those of their homologue cumulants of the probability density, namely: between the first
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derivative of the order parameter and the variance representing the second cumulant, as well as
between the second derivative of the order parameter and the skewness, which is related to the
third cumulant.

In this work, we present a numerical study of a thermally driven QCD-DPT in order to
investigate this similarity, which does not appear to have been previously developed, focusing on
the following main objectives: a numerical study of the thermal QCD-DPT in a finite volume, an
investigation of the similarity between the first derivative of the order parameter with respect
to temperature, i.e., the susceptibility, and its homologue cumulant, i.e., the variance, and a
parametric study aiming to provide an authentic approach to estimate the effective transition
temperature for the studied DPT.

2. Statistical description of the Deconfinement Phase Transition in finite volumes
In order to conceive the QCD deconfinement phase transition in a finite volume, the coexistence
model reported in [5] is a powerful tool. This model considers a mixed Hadronic Gas-Quark
Gluon Plasma (HG-QGP) system, which exhibits a finite volume V . The volumes of the HG
and QGP phases, noted VHG and VQGP respectively, form together the total volume V , and the
fraction of volume occupied by the HG phase is designated by the parameter h, such that:{

V = VHG + VQGP
VHG = hV.

(1)

The system is treated as a grand canonical ensemble, i.e., the thermodynamic variables are:
the temperature (T ), the volume (V ) and the chemical potential (µ). In the framework of the
coexistence model, the probability of finding the system in the state h is defined by [5]:

p(h, T, V, µ) =
Z(h, T, V, µ)∫ 1

0 Z(h, T, V, µ)dh
, (2)

here, Z(h, T, V, µ) is the total partition function of the system. The mean value of a given
thermodynamic quantity is defined as [5]:

〈X(T, V, µ)〉 =

∫ 1

0
X(h, T, V, µ)p(h, T, V, µ)dh =

∫ 1
0 X(h, T, V, µ)Z(h)dh∫ 1

0 Z(h)dh
, (3)

where, X(h, T, V, µ) is the total thermodynamic quantity of the system in the state h.
Taking into account the color-charge confinement property, requiring that the QGP phase

must be a colorless object in the color space [6], and under the assumption of non-interacting
phases, the total partition function of the system can be expressed as follows:

Z(h) =
4

9π2
exp

[
π2

30
V T 3

] ∫ π

−π

∫ π

−π
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30
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T 4
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where, M(ϕ,ψ) represents the weight function (Haar measure) having the following expression:
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and:
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12
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here, dq = 2Nf (Nf : is the number of flavors) and dg = 2 being the degeneracy factors of quarks
and gluons respectively. The angles θq(q = r, b, g) are given by:

θr =
ϕ

2
+
ψ

3
, θb = −2ψ

3
, θg = −ϕ

2
+
ψ

3
, (7)

and θg(g = 1, ..., 4) are expressed as follows:

θ1 = θr − θg, θ2 = θg − θb, θ3 = θb − θr, θ4 = 0. (8)

We note that our study is performed at a vanishing chemical potential (µ = 0), taking into
account massless u and d quarks, i.e., Nf = 2 in the QGP phase, and the pionic degrees of

freedom in the HG phase. The value of the bag constant B1/4 = 200 MeV is adopted in all our
calculations, with the units chosen as: kB = ~ = c = 1.

Based on the definition (3), the mean value of any physical quantity within the phase
coexistence model may be calculated using the exact total partition function defined in (4).
The first quantity of interest for the thermal DPT is the order parameter, which is the mean
value of the volume fraction occupied by the HG phase, 〈h(T, V )〉, given by:

〈h(T, V )〉 =

∫ 1
0 hZ(h)dh∫ 1
0 Z(h)dh

. (9)

The second quantity is the first derivative of the order parameter with respect to temperature
T , representing the susceptibility, χ, defined as:

χ(T, V ) =
∂〈h(T, V )〉

∂T

∣∣∣∣
V

. (10)

On the other hand, we are interested in the cumulants of the probability density, p(h), where
the first cumulant is the order parameter 〈h〉 itself, and the second cumulant is the variance, σ2,
given by [7, 8]:

σ2(T, V ) = 〈h2〉 − 〈h〉2, (11)

where 〈h2〉 is, using the definition (3), expressed as follows:

〈h2〉 =

∫ 1
0 h

2Z(h)dh∫ 1
0 Z(h)dh

. (12)

The involved integrals in the considered response functions may be calculated numerically at
each temperature, T , and volume, V , and this allows us to illustrate the variations of the order
parameter, the susceptibility and the variance, on the whole adopted range of temperature, for
various volumes.

3. Thermal behavior of the studied response functions
In the following, the thermal behavior of the considered response functions, namely, the order
parameter, its first derivative with respect to temperature, as well as the second cumulant of
the probability density is investigated on a range of temperature around the transition region at
different finite-volumes. The considered volumes, i.e., 550, 700, 850 and 1000 fm3 are included
in the RHIC (Relativistic Heavy Ion Collider) realized sizes; (268-2144 fm3) [9], where the QGP
is eventually formed during ultra-relativistic heavy ion collisions.

The order parameter behavior in the range of temperature 143− 146 MeV at the considered
finite volumes is illustrated in figure 1. The curves show a sharp transition in the infinite volume
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limit, characterized by a step-like jump at a transition temperature noted Tc(∞). This latter
has been found to depend on the number of quark flavors, Nf , as well as on the bag constant,
B, and it is obtained for Nf = 2 according to the following relationship (see for example [10]):

Tc(∞) =

(
45B

17π2

)1/4

, (13)

for B1/4 = 200 MeV , we find Tc(∞) = 143.93 MeV , and this value of the transition temperature
agrees very well with that obtained from recent lattice simulations [10, 11]. In small volumes, the
transition is smeared out over a transition region that is larger, smaller is the volume. Another
characteristic of the obtained curves is also the shift of the transition temperature to higher
values for small volumes (Tc(V ) > Tc(∞)). This last finding is due to the color-singletness
requirement in the QGP partition function [5, 6].

144.0 144.5 145.0 145.5 146.0
0.0

0.2

0.4

0.6

0.8

1.0

<h
(T

,V
)>

T (MeV)

 V=550 fm3

 V=700 fm3

 V=850 fm3

 V=1000 fm3

 

 

Figure 1. The order parameter variations with temperature for different volumes.

The variations of the susceptibility, χ(T, V ), and its homologue cumulant, i.e., the variance,
σ2(T, V ), are displayed in figures 2 and 3, respectively. Both quantities behave like bell function,
with the peaks broadened, smaller is the volume. The recorded peaks are located at the effective
transition temperature Tc(V ), seemingly tending to Tc(∞) with increasing volume.
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Figure 2. Thermal behavior of the sus-
ceptibility χ, for various system volumes.
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Figure 3. The variance σ2 vs. tempera-
ture for different system volumes.
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4. Correlation study and parametric investigation
4.1. Correlation between susceptibility and variance
In the following, let us investigate the similarity between the thermal susceptibility, χ, and
the variance, σ2, for the studied DPT. In a first step, we plot both χ and σ2 with varying
temperature, at a fixed volume (V = 550 fm3), on figure 4, considering a logarithmic scale,
since their order of magnitude are different and do not allow to plot them clearly on the same
graph. As expected, a remarkable similarity is observed with the peaks occurring at the same
effective transition temperature Tc(V ).

In a second step, let us plot σ2 vs. χ; the variations of the variance with the susceptibility for
the considered values of the system volume are illustrated graphically in figure 5. The obtained
plots reflect a linear proportionality, where the slope is inversely proportional to the system size.
Thus, the variance is proportional to the susceptibility with a proportionality factor depending
on the volume V .
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Figure 4. Evolution of the susceptibil-
ity and the variance at V = 550 fm3.
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Figure 5. Variation of the variance, σ2,
with the system susceptibility, χ.

4.2. Susceptibility and variance parametrization
In the case of coexisting HM and QGP phases, the order parameter in a finite volume, 〈h(T, V )〉
may be expressed using one of the known mathematical representations of the Heaviside step-
function as follows [3, 12]:

〈h(T, V )〉 =
1

2

(
1− tanh

[
T − Tc(V )

ΓT (V )

])
, (14)

where, Tc(V ) is the effective transition temperature and ΓT (V ) is the half-width of the rounded
transition region. This leads directly to the susceptibility expression:

χ(T, V ) =
∂〈h(T, V )〉

∂T

∣∣∣∣
V

= − 1

2ΓT (V ) cosh2

[
T−Tc(V )

ΓT (V )

] . (15)

Based on the parametrization of the susceptibility with equation (15), and since a linear
proportionality has been found between variance σ2 and susceptibility χ, we propose a
parametrization for the variance, similarly to the susceptibility, on the form:

σ2(T, V ) =
1

Γσ2(V ) cosh2

[
T−Tc(V )

ΓT (V )

] , (16)
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where, Γσ2(V ) is a dimensionless coefficient. An illustration of such parametrizations of the
susceptibility and the variance at the volume V = 1000 fm3, are presented in figure 6 and figure
7, respectively. The regression coefficients are close to one for both performed fits. The obtained
fit parameters Tc and ΓT for V = 1000 fm3 from the proposed parametrization of the variance
are in very good agreement with those obtained with the parametrization of the susceptibility,
as it can be noted from the results displayed on figures 6 and 7.
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Figure 6. Parameterization of the
susceptibility to the equation (15).
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Figure 7. Parameterization of the
variance to the equation (16).

5. Conclusion
In this communication, a thermally driven deconfinement phase transition from a Hadronic Gas
consisting of massless pions, to a color-singlet QGP, containing gluons and massless up and down
quarks, has been studied numerically. Based on a model considering the coexistence of both
phases in a finite volume, a statistical approach was used in the framework of the QCD formalism
to describe the thermal phase transition occurring between the two phases at vanishing chemical
potential (µ = 0). The finite size effects on the DPT have been investigated through the study of
the thermal behavior of the order parameter, the susceptibility and the second cumulant of the
probability density representing the variance, at different volumes, for B1/4 = 200 MeV . The
correlation between the susceptibility, χ, and the variance, σ2, has been probed for the studied
DPT, and the linearity between the two quantities is obtained. Furthermore, we proposed a
parametrization of the variance, and this is done for the first time, to the best of our knowledge.
The obtained results show that the proposed parametrization may be considered as an authentic
method to estimate the effective transition temperature.
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