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Abstract. We consider the one dimensional schrédinger eigenvalue problem on a finite domain
(Strum-Liouville problem) for several PT-symmetric complex potentials, studied by Bender and
Jones using the WKB approximation method. We make a comparison between the solutions
of theses PT-symmetric complex potentials using both the finite difference method (FDM) and
the WKB approximation method and show quantitative and qualitative agreement between the
two methods.

1. Introduction

Recently, there has been growing interest in non-hermitian Hamiltonians having real energy
spectra [1], these complex potentials extend quantum mechanics to several open fields of
theoretical, experimental as well as technological physics [2]. In conventional formulation of
quantum mechanics the Hamiltonian must be Hermitian H = H' (mathematical axiom) in order
to ensure the reality of the energy spectrum (the eigenvalues of H). In alternative formulation
the mathematical axiom of Hermiticity is replaced by the physically transparent axiom called
space-time reflection symmetry (PT-symmetry). In this light, Bender and his collaborators [3]
[4] and later others [5] have studied and solved non-Hermitian Hamiltonians, who leads to real
eigenvalues by using numerical and analytical techniques see [9]-[10] and references there in.
The goal of this paper is to investigate a class of PT-symmetric Hamiltonian with complex
potentials, for which we compare between WKB approximation and finite difference method and
systematically show the qualitative and quantitative agreement between the two.

2. WKB Analysis of PT -Symmetric Sturm-Liouville problems

Most problems encountered in PT-symmetric QM cannot be solved exactly. The solution
of the schrodinger eigenvalue problem exist only for an infinite domain, one must resort to
approximate methods, a variety of such methods have been developed and each has its own area
of applicability. One of these methods is the Wentzel-Kramers-Brillouin approximation used by
Bender and Jones [6]-[7] to investigate PT-symmetric systems defined on finite domain whose
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eneregy eigenvalues grow like n? for large n. Another future of the PT eigenvalue problem on a
finite domain is the showing up of a sequence of critical points at which pairs of eigenvalues cease
to be real and become complex conjugates of one another. For the potentials considered here
this sequence of critical points is associated with a turning point on the imaginary axis in the
complex plane. In the next section we will briefly review the WKB analysis of [6][7], where the
authors focus on the complex potentials to calculate the real eigenvalues of energy and plotted
as function of the coupling parameter A.

2.1. WKB calculation of eigenvalues for “one turning point ”

In their paper [6] Bender and Jones considered the one -dimensional time independent
schrodinger equation :

—U" () 4 V(iz)V(z) = AU (z), (1)

where A is the energy eigenvalue, and the following boundary condition ¥ (+1) =0, ¥(—1) =0
are imposed. In a preparatory step, they treat both the eigenvalues A and g (coupling parameter)
as large and proportional A = a - g, thus substituting in (1 )one obtains:

—0"(z) = =g Q(x) - ¥(a), (2)

where Q(z) = V (ixz) + a. We must notice that the asymptotic solution of (2) is controlled by a
turning point (see FIG[1]) on the imaginary X axis, satisfying V(—b) + a = 0.

We will here summarize the methodology and skip the details of the calculation presented in [6],
where we refer the interested reader.
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Figure 1. schematic path with end Figure 2. schematic the path of
point x = +1 of one turning point integration of WKB function for
x =1b. two turning point.

Partl: firstly we approximate our schrodinger equation near the turning point, we start by
& =ib+y-c, where y < 1 then Q(z) = iycV' (—b), substitution of this in (2) gives
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2
the approximated schrédinger equation have a similar form as the standard Airy differential
equation, we then convert (2) as

U(y) = —igc®V' (—b)y¥(y), (3)

z—1ib ,—in/6
o . y v
8—@/2\11(2/):@/\11(2/), with c = ,},eml/e (4)
v o= gVi(=b)?

For the sake of convenience the solution of the standard Airy differential equation is well known,
where the solution of the schrodinger equation will take the following form:
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T — b T — b

U(y) = K1 4i(y) + Ko Ai(wy) & U(y) = K1 Ai( e /0) + Ky Ai(w e /6y (5)

Part2: They approximate the schrodinger equation away from the turning point on both
sides using WKB function and invokes the appropriate boundary condition, it will be done as:
L [ L
R[z] < 0= V() ~ ! exp[z/ dsy/gQ(s)] +
x

ib
1 2 T €X —1 ds s 6
Q]! Tl R CCOIC

Ur(=1)=0= 0= Lyexpli /_Z: ds\/gQ(s)] + Lo exp[—i /_Zj ds\/gQ(s)] (7)
R[x] > 0= Ugr(z) ~ i expli /1: ds\/gQ(s)] + 2 exp[—i /Z; ds\/gQ(s)]  (8)

R
[Q(z)]7 Q)7

Ur(1) =0= Ryexpli /lb1 dsy\/gQ(s)] + Rg exp[—i /Zbl dsy\/gQ(s)] (9)

At this point, we will have 6 arbitrary unknown constants. Obviously our key technical step
to determine them by the asymptotic matching between the solution of Airy function near the
turning point and WKB function away from the turning point, where they must be identical
and can be expressed as:

e = Login3e /6 sk = Riginze /6 10)
. 1 1 1 1
ﬁ(_Klemﬂ-/S—i—KQ) = Ligiy2 2{(/2% = Rogivy?2

Then it is more advantageous to combine it, when the calculation can be easily carried out to a
secular equation that determines the real energy eigenvalues:

sin[/_l1 dsy\/gQ(s)] + %exp[i /_Z: dsy\/gQ(s) — i/ibl ds\/gQ(s)] =0 (11)

2.2. WKB calculation of eigenvalues for ” More than one turning point ”

Let us mention here that the previous secular equation (11) fails to reproduce the expected energy
eigenvalues for more than one turning point. Therefore the authors in a subsequent paper [7]
readapted their treatment with some modification to the case the path of integration passes
through two turning points xj and zgr as schematized in FIG[2]. The WKB approximation
of the wave function Uy (8) and ¥y, (6) are respectively the wave functions on the left region
of the z; and the right region of zp turning points. Nevertheless, there is additional basic
conditions requiring the wave function in the region between the two turning points ¥,; to be
PT-symmetric, to finally yield the new following secular equation:

sin[/_l1 dsy/gQ(s)]+e* cos|i /:R ds\/gQ(s)] =0,  where A=2Imip, I; = [/_le dsy/gQ(s)]
(12

)

In fact this constraint can be viewed as a compact way of setting a secular equation of the WKB
analysis involving the pertinent boundary condition and also for complex potential which had
more then one turning point, this is what makes the method so effective.
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3. Finite Difference Method

Finite difference method is a numerical method based on mathematical discretization of

differential equation of boundary problems. The basic idea of FDM (Finite Difference Method)

is to replace each term of the partial derivative % by a finite difference approximation Ai(f)
obtained by Taylor’s expansion near the point of interests and neighboring points as schematized

in FIG[3].
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Figure 3. describe the three area Figure 4. the describtion of the wave
of function f(z) presented in finite function in discretization space with the
difference scheme. boundary condition.

Let us summarize the FDM to solve the time independent schrédinger equation in a close
form, where we must notice that we will consider a complex PT-symmetric potential. This leads
to discretize the geometric domain of the X-space into grid points x,, n =1,2....N (see FIG[4])
and at each point the stationary 1D schrodinger equation can be written as:

HU = BV < H,U(z,) = BU(z,) < U (2,) + V(2n)U(2y) = BV (z,,). (13)

We now have a system of N equations, producing N solutions. The next step is to approximate
the second derivative of the wave function ¥ (z) using finite difference scheme [8] such that:

[t = % [dZ‘I’] _ [P ]nt1 — [%2]n _ Vg — 20 4 Wi (14)
(4L, = 7‘1’"1;*1 dz2 ™" Ax (Ax)?
Where Az, = Az, = Az =a.
The system (13) becomes:
1
EV, = V(i’n)\l’n — tO[\I/n+1 -2V, + \I’nfl] tg = (A:L‘)Q . (15)

After using an appropriate FD scheme to approximate the schrédinger equation, we must
impose the boundary condition (see FIG[4]) as a consequence of the consideration of finite
domain ¥(z1) = ¥(zy) = 0. In fact the system of equations (15) can be easily written in
matrix notation, where we must represent the wave functions in vector and the Hamiltonian in
matrix forms who includes the potential as:

[ Wy ] [ 2t + Vi(xy) —to 0 0 0 0 2
0, —to 2o+ Viza) —tg 0 0 0 7,
E : 0 _tO ... '.. 0 O E (16)
Uy | 0 0 0 Wy,
: 0 0 0 A —t, :
L YN ]| 0 0 0 0 —ty 2o+ V(zy) | LIN ]
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4. Numerical Results and Discussion

We give numerical results showing the agreement between both methods. In order to make a
comparison between the FDM and the WKB approximation for non-hermetian Hamiltonians
we choose a class of complex PT-symmetric potentials studied by Bender and Jones [6]-[7]. For
the FDM we have developed a code for solving the eigenvalue problem of the Hamiltonian (16)
with boundary condition similar to those considered using WKB analysis [6]-[7]. We have taken
into account additional considerations, as variation of the dimension of our Hamiltonian matrix,
which also connect to the number of the grid points as well as the width of spacing distance
between them (see FIG[4]).
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Figure 5. Real energy levels for WKB analysis(Right) and FD method(Left) of V(z) = igx.

We start our comparison between the two methods for potentials which have one turning
point V(z) = igz, the results are represented in FIG[5], where we do find that FD method
reproduces the one obtained from WKB analysis. The same result is obtained for the sinusoidal
potential V(z) = igsin(2z), shown in FIG[6].

Numerical Finite Difference Method - V(x)=i g Sin(2 X)
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Figure 6. Real energy levels for WKB analysis (Right) and FD method (Left) of V(z) =
igsin(2z).
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Briefly, we must note that in WKB analysis the energy eigenvalues A and the coupling pa-

rameter g was treated as large and proportional, in contrary the range of validity of FD method
is for small values of both (), g) nevertheless we note the excellent agreement between the two
results.
We end this paper by showing numerical results for potentials having more than one turning
point using the potential V(z) = igz® as an example. In FIG[7] one sees that FD method ap-
proximately reproduces the structure of the eigenvalues obtained by the WKB analysis. This is
a consequence of truncation errors involved in the numerical computations due to the fact that
in FD representation of derivatives with Taylor’s series expansion the higher order terms are
neglected. In other words it means that the truncation error identifies the difference between
the exact solution of a differential equation and its finite difference solution.
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Figure 7. Real energy levels for WKB analysis (Right) and FD method (Left) of V (x) = iga3.

5. Conclusion

Summarizing the results presented in this paper: The FD method can effectively offer an easy
way to solve the one-dimensional schrodinger complex PT-symmetric eigenvalues problem.
The developed methodology of FDM provides a significant advantage over conventional analyt-
ical method like WKB analysis. Further study may include the high-order terms of Taylor’s
series expansion to obtain more accuracy (diminish the truncation error) especially for the com-
plex potentials (having more then one turning points). Which will be the subject of future
investigations.
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