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Abstract. We are looking for a material which possesses the required properties as demanded 

for technological applications.  For this we have to repeat the preparation of the appropriate 

materials and its characterizations. So, before proceeding to experiments, one can study on 

computer generated structure and predict the properties of the desired material. To do this, a 

concept of Density Functional Theory comes out. 

1.  Introduction 

The first principles approach to condensed matter theory is widely used. It starts from the very basic 

principles that materials are made of atoms. These atoms are again made of a positively charged nucleus 

and a number of negatively charged electrons. The interactions between atoms are determined by the 

interactions of the constituent electrons and nuclei that form the basic interaction.  Thus if we can model 

interactions accurately, then most of the complex physical properties can be understood. Thus the ab 

initio calculation or first-principles calculation do not depend upon any external parameters except the 

atomic numbers of the constituent atoms to be modelled and cannot therefore be biased by 

preconceptions about the final result. Such calculations are reliable and can be used with confidence to 

predict the behaviour of nature. 

 

2.  Concepts of Density Functional Theory: 

 

Density functional theory (DFT) is the basic theory of electronic structure calculations in Condensed 

Matter Physics. It was so challenge to approximate functional and computational cost. In 1990’s there 

are widely used functional that give a quite reasonable accuracy with the affordable computational cost. 

In simple language, Density functional theory is a completely different in terms of its approaching any 

interacting problem that by mapping it exactly to a non-interacting problem that gives an alternative 

way to tackle the problem. Thus DFT is a ground-state theory in which the charge density is the relevant 

physical quantity. DFT is very successful in describing structural and electronic properties in materials 

science and chemical science.  
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Density functional theory is developed based on the Hohenberg-Kohn theorem. There are two parts in 

Hohenberg-Kohn Theorem. 

Hohenberg-Kohn Theorem –I: 

This theorem states that the external potential Vext(r) is determined (within a trivial additive constant) 

by the electron density ρ(r). 

It implies that for a given density there will be a single Vext(r). In other words, there cannot be two 

Vext(r) for a given ρ(r). Thus, this theorem demonstrates that the electron density specifies uniquely the 

Hamiltonian operator.  

In consequence, an alternative statement of the first Hohenberg Kohn theorem is that any ground state 

expectation value corresponding to an observable Ô , is a functional of the density, 

ˆ[ ] [ ] [ ]O O      

Hohenberg-Kohn Theorem –II: 

The second Hohenberg Kohn theorem states that the functional FHK[ρ] that delivers the ground state 

energy if and only if the input density is the true ground state density. 

In other words, 

For a trial density ( )r% such that ( ) 0r % and ( )r dr N  %  

 [ ]E E  % 

where  E % is the energy functional. 

   ( ) ( )ext HKE r V r dr F   % % % 

 

2.1 Kohn-Sham equations 

 

We know that a solid consists of heavy positively charged particles (nuclei) and lighter negatively 

charged particles (electrons). The nuclei are much heavier and therefore much slower than the electrons. 

We can consider the nuclei are at fixed positions. So, the nuclei become the external potential to the 

electrons. This is the Born-Oppenheimer approximation. In the further discussion, we use the atomic 

units (that is e = me = ћ = 1; 4πєo=1). Now, after Born-Oppenheimer approximation, we can see the 

Solid is generally a system of interacting electrons in the field of fixed ions described by the 

Hamiltonian,     
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where “rij” is the separation between ith and jth electrons; 
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   is the external potential acting on ith electron due to the M nuclei and “riI” is the 

separation of ith electron and Ith nucleus. 

 

A stationary electronic state is then described by a wave function Ψ (r1, r2, .......ri......rN) satisfying the 

many electron Schrödinger equation,  

                                                    
 EH 



 

that is       
 EVVT eeext  ][



    (2) 

Hohenberg and Kohn proved that the total energy of a system in the presence of the static external 

potential is unique functional of the charge density.  
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HK[ ] [ ] ( ) ( )extE F r V r d r                                                    (3)    

 Here the term,  

[ ] [ ] [ ]ee HKT V F   
  

 is same for all solid and thus it is universal. This does not depend on the particular system under 

consideration and is called Hohenberg-Kohn functional. 

  

In the non-interacting case, Vee = 0,  

Thus the ground state energy E[ρ] has a kinetic contribution and a contribution from the external 

potential.  
3[ ] [ ] [ ] [ ] ( ) ( )o ext o extE T V T r V r d r             (4) 

Again, the ground state wave function of the non-interacting system can be written as a Slater 

determinant with the orbitals satisfying the single particle Schrodinger equation,  
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The ground state density is then given by a sum over occupied states, 
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where the orbital 
0

m  are normalized so that the density satisfies the correct condition to the number of 

particles N. 

 

Thus, we can write the ground state energy for this non-interacting case as 
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Now, for the interacting case, we can represent the energy functional E[ρ] for a many electron system 

in the form, 
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  is the Hatree energy 

and EXC[ρ(r)] is the exchange correlation energy that contains all the contributions not taken into account 

in the kinetic energy functional of non-interacting electron gas, the external and the Hatree energy 

respectively.  

Thus, we can write the analogous equation [equation (5) for non-interacting case] for the interacting 

electron system as 
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where the single particle wave functions  
)(rm  are the N lowest energy solutions of the above equation 

(9) called the Kohn Sham equations and
)(rm are the Kohn Sham orbital that reproduce ρ(r) of the 

original many-body problem.  
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That is  
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  is the exchange correlation potential. 

 

 

2.2 Easy Steps for Computational DFT 

 

We recall the representation of total energy [equation (8)] of the interacting electrons system,  
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So, we have from equation (10),  

( ) ( ) ( )eff ext H XCV V r V r V r  
 

         
( ) ( ) ( )ext eff XC HV V r V r V r  

 
 

Incorporating this expression in the above equation, we can write as 
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Equation (11) gives the final expression for the ground state energy of the system of interacting 

electrons. This is the expression used in computational calculation to determine the ground state energy 

functional for the interacting system of electron. 
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