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Abstract. For the investigation of physics within and beyond the Standard Model, a precise
evaluation of higher order corrections in perturbative quantum field theory is required. We
have worked on the development of a computational method for Feynman loop integrals with
a fully numerical approach. It is based on numerical integration and extrapolation techniques.
In this paper, we describe the status and new developments in our techniques for the numerical
computation of Feynman loop integrals.

Separation of ultra-violet divergences is important for the renormalization procedure. In
our analyses, the separation can be done numerically. For 2-loop integrals we have performed
the calculations for up to 4-point functions, and for 2-point functions we can handle up to 4-
loop integrals. We report the status and accuracy of the computations with detailed numerical
comparisons to results in the literature, in order to demonstrate that our method will evolve
into an important component of automated systems for the study of higher-order radiative
corrections.

1. Introduction
In high energy physics, we encounter the need for large-scale computations to obtain the
theoretical prediction required to study experimental data. When the number of final particles
is large, the matrix element and phase space becomes complicated and lengthy. When good
experimental data are available, i.e., data are of high statistical quality, the higher-order
radiative correction is mandatory. Such a large-scale computation is generally beyond man-power
calculation, so that automated systems to calculate the perturbative expansion in quantum field
theory (QFT) prove to be an essential tool for the present and future high-energy experiments.
Perturbation calculations in QFT follow a well established algorithm and many systems are
already provided for practical use to analyze experimental data. For the radiative corrections,
the one-loop order calculation is incorporated in several systems, GRACE [1], CompHEP [2],
FeynArt/Calc[3], FDC[4], and so forth. Considering future accelerator experiments, the
development of a system to perform computations beyond one-loop will be of great importance.
One indispensable component of such a system is a library of multi-loop integrals. The library
should be robust and general to treat any combination of internal masses and external momenta.
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While the analytical calculation of multi-loop integrals is studied by many authors[5], the
analytic expression for the most general form seems to be far from accomplished. Therefore
we have started to solve the problem by numerical methods.

2. Computational method for loop integrals
The integral we study is

(N —nL/2) > Ty
I=(-)» (47) 3:/2/ /Hd T2 (v _Zp)gjcv)nL/Q (1)

where n is the space-time dimension, N is the number of propagators, L is the number of loops

and
w

ik M? :;xrmg. (2)

Here the functions U and W are polynomials in the integration variables x,, and are derived
from the structure of the graph. The coefficients of the W polynomial are determined by the
external momenta and internal masses.

In the analytic method, one needs a sophisticated variable transformation of the x,. However,
we dare not exploit the transformation since the library is intended as a component of an
automated system where the integrand will be supplied by the automatic diagram generator, so
that the assignment of the x, and other elements may not be under our control.

When a Feynman diagram includes fermions and/or gauge bosons, the integral has a
momentum dependent numerator. Although the integral studied here is of scalar type, the
introduction of a numerator does not cause a serious problem (although it may make the
numerical integration more computationally intensive).

We introduce dimensional regularization to handle ultraviolet divergence, i.e., by setting

V=M?*-

n=4-2¢. (3)

In the numerical evaluation of Eq.(1), we might encounter a singularity for p — 0 and/or for
€ — 0. In the analytical treatment of loop integrals, the singularity for p — 0 can be avoided
by analytic continuation. However, in the numerical method, if we calculate Eq.(1) by naively
taking p = 0, the result may be divergent or unstable. We have developed the direct computation
method (DCM) to manage the problem [6, 7, 8, 9]. In DCM, we keep the numerical value of p
non-zero. This value is not necessarily very small. When p is finite, Eq.(1) can be computed
numerically as a function of p. For a sequence of p = pr, K = 1... K, we obtain a sequence of
numerical values I(pg), k= 1... K. From this sequence we can estimate the integral I either by
a nonlinear extrapolation with Wynn’s algorithm (e algorithm) [12], or by using a linear solver.
Note that a geometric sequence is needed when using the e algorithm.

In this paper, we discuss the singularity as ¢ — 0, originating from the ultra-violet (UV)
singularity. The infrared singularity also appears as a pole in €. As the latter is already studied
n [8], we concentrate here on the UV-pole. The UV pole in Eq.(1) originates from the Gamma
function and/or the integral.

Generally the integral I can be expanded as

C_o C_
I= +—+—+Co+016+025 + - (4)

and we extract the coefficients C; numerically using the same methods as for the case of p — 0,
i.e., by linear or nonlinear extrapolation.
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3. Numerical results

Using our numerical method, we have computed 2-loop diagrams with up to 4 external lines, and
self-energy diagrams with up to 4 loops. The results are compared with those in the literature and
show good agreement. As described in the sections below, we use various integration libraries,
acceleration and hardware platforms, and check the efficiency and convergence behavior of the
computation.

3.1. 4-loop self-energy integrals

We study the diagrams in Fig.1. The integral part is finite, and the Gamma factor is divergent
for Fig.1(1) and (2). We consider massless internal particles and p? = 1 for comparison with the
results in [15].

Results are shown in Table 1. The parallel execution time for Table 1(1) is 48s with ParInt [10],
using 64 MPI[11] processes on four 16-core nodes of the thor cluster at Western Michigan
University. The integration for Table 1(2) is performed in 4.8h elapsed time for a 64-thread
computation using a double-exponential integration formula (DE)[13] on SR-16000. Fig.1(3)
and (4) are also calculated with ParInt on the thor cluster.

Table 1. 4-loop self-energy integrals for Fig.1. The rows
with BC list results of [15].

C_1 Co Ch

Fig.1(1) -0.001736111111109  -0.016927083381  -0.011842916

Fig.1(1) BC -0.001736111111111 -0.016927083333 -0.011842930

Fig.1(2) 5.1846392 -2.582434 70.39877

Fig.1(2) BC  5.18463877 -2.5824360 70.399151

Fig.1(3) - 55.585150 Not, yet

Fig.1(3) BC — 55.5852539

Fig.1(4) - 52.017714 Not yet
Figure 1. 4-loop self-energy Fig.1(4) BC - 52.017868

diagrams

3.2. 3-loop self-energy integrals

Table 2. 3-loop self-energy integral
for Fig.2(5). The row marked L gives
the results of [14].

C_1 Co

Fig.2(5) 0.92370 -2.4201
Fig.2(5) L 0.923631827 -2.42349163

Figure 2. 3-loop self-energy diagrams

We deal with the diagrams in Fig.2 where maximally a a% singularity appears, corresponding

to a double-pole divergence (~ E%)
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As an example, we show the results for Fig.2(5), ladybug. To compare with [14], we let
m, = 1, p> = 1. The Gamma factor is finite and the integral is single-pole divergent (~ %)
This calculation is carried out with DE and performed in quadruple precision on (dual) E5-
2687W v3 @ 3.10GHz using 40 threads. Extrapolated results obtained with Wynn’s algorithm
are shown for Fig.2(5) in Table2. Computations for the other diagrams in Fig.2 result in a
similar agreement with [14].

3.8. 2-loop vertex integrals
As an example, we consider the diagram in Fig.3(1), which has UV divergence from both the
Gamma function and a single pole in the integral part. In total, it is divergent as E%

For the numerical computation, we take m, = 1, p? = p3 = p2 = 1, so that there is no
singular threshold. In Table 3 we show the convergence behavior of the C coeflicients, where a
linear solver is used to estimate the coefficients. The bottom row of the table lists the values
from [14].

The diagram of Fig.3(2) is also studied and the result for C_; is in good agreement with [14].

Table 3. 2-loop vertex integral for Fig.3(1). An integration is
performed for each €; = 1/b; in the first column, and the four
coefficients are estimated by a linear extrapolation.

bj T [S] 072 071 Co Cl
P T3, M3 P2
3 14
4 1.5 0.514890217  0.535680679
6 1.8 0.505861627  0.598880809 —0.108343080
8 5.2 0.501111606  0.660631086 —0.364844229  0.342001531
12 25 0.500159017  0.680635463 —0.515353351  0.822106580
16 4.2 0.500017647  0.685300679 —0.573315125 1.161395016
pL o Tsms Po 24 20.5 0.500001357 0.686098882 —0.588595022 1.307352233
32 19.1  0.500000078 0.686192225 —0.591298134 1.347594589
Figure 3. 2-loop ver- 48 8.6 0.500000001  0.686200327 —0.591641476 1.355242242
tex diagrams [14] 0.5 0.686200636 —0.591666701  1.356196533
3.4. 2-loop box integrals
Table 4. 2-loop box integrals for Fig.4. Listed
(1) @ ® are: integral dimension, error tolerance, maximum
» Gl — 7 s o E » number of integral evaluations, sequential and
ol Nes |, N . N parallel time (in seconds), and parallel speedup,
o o ” ” I ] ” ” - o7 ” R = Tl/T64.

n P D. Tol. Eval. T1 [S] T64 [b] R
N Fig4(l) 5 107 400M 326 0.74 44.1
e Fig4(2) 6 107° 3B 213.6 506  42.2
Fig4(3) 7 107® 5B 507.9 883 575
Figd(4) 7 107 2B 189.9  4.33  43.9
Figure 4. 2-loop box diagrams Fig.4(5) 7 1077 300M 27.6 0.49 56.3
Figd(5) 7 107° 20B 1893  34.6 54.7
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Finally, we show results for the box diagrams in Fig.4. These are not UV divergent; the
computation is done with ¢ = 0. Furthermore, the test integral is calculated in the unphysical
region, m, =1, s =t =1, p? = 1, so that it is possible to take p = 0. The comparison with [14]
was shown before in [7].

Here, we report the speedup of the parallel computation on MPI[11]. We use ParInt on the
thor cluster at Western Michigan University. Asshown in Table 4, we gain significant acceleration
with 64 processes. The computation times with one process (77) and with 64 processes (Tg4)
are given in seconds (s), and the speedup is R = T7/T§4.

4. Summary

Numerical methods are tested to calculate loop integrals with 2 to 4 loops, and up to 4-point
functions. In parameter space, up to 8-dimensional integrals are computed. The DCM method
works to estimate both UV-divergent and finite terms using dimensional regularization. As the
approach is expected to be part of an automated system, no special handling of the integrand is
utilized. Automatic decisions on the variable transformation might improve the status. Problems
with large CPU-times can be targeted using suitable parallel software and platforms. The study
should be extended to the general cases with physical masses and external momenta, including
a numerator part in the integrand function.
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