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Abstract. In this talk, we discuss recent progress in the application of generalizations of
polylogarithms in the symbolic computation of multi-loop integrals. We briefly review the
Maple program MPL which supports a certain approach for the computation of Feynman
integrals in terms of multiple polylogarithms. Furthermore we discuss elliptic generalizations
of polylogarithms which have shown to be useful in the computation of the massive two-loop
sunrise integral.

1. Motivation: Multiple polylogarithms and Feynman integrals

Classical polylogarithms Lin are obtained as a generalization of the logarithm function

Li1(z) = − ln(1− z) =

∞
∑

j=1

zj

j
, |z| < 1,

by allowing for higher integer powers of the summation variable in the denominator:

Lin(z) =

∞
∑

j=1

zj

jn
, |z| < 1.

These functions can be expressed in terms of integrals. For the dilogarithm, Leibniz [54] already
found the identity

Li2(z) = −

∫ z

0

dx

x
ln(1− x).

In general, for weights n ≥ 2, we have

Lin(z) =

∫ z

0

dx

x
Lin−1(x). (1)

If we write all integrations on the right-hand side of this equation explicitly, we obtain an iterated
integral

Lin(z) =

∫ z

0

dxn
xn

...

∫ x3

0

dx2
x2

∫ x2

0

dx1
1− x1

. (2)
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In this talk, we denote iterated integrals by

[ωr|...|ω2|ω1] =

∫ z

0
ωr(xr)...

∫ x3

0
ω2(x2)

∫ x2

0
ω1(x1)

where the ωi are differential 1-forms in some given set. In eq. 2 we see that the set

ΩP =

{

dx

x
,

dx

1− x

}

suffices to construct the classical polylogarithms.
Generalizations of polylogarithms can be obtained by either generalizing the terms in the

sum representation or by extending the set of differential 1-forms. In both ways, one arrives at
multiple polylogarithms. They are defined as the series [44, 45]

Lin1,...nk (z1, ..., zk) =
∑

0<j1<...<jk

zj11 ...z
jk
k

jn1

1 ...jnkk
for |zi| < 1

and they can be expressed in terms of iterated integrals known as hyperlogarithms [61, 52, 53].
These are obtained from differential 1-forms of the set

ΩHyp =

{

dx

x
,

dx

x− yi

∣

∣

∣

∣

i = 1, ..., k

}

. (3)

Some powerful methods and computer programs for the analytical computation of Feynman
integrals rely on either the sum representation or on an integral representation of multiple
polylogarithms. In section 2 we review the computer program MPL which supports an approach
based on iterated integrals. For Feynman integrals which can not be expressed in terms of
multiple polylogarithms, we are in search of alternatives. In section 3 we briefly recall the concept
of elliptic functions and in section 4 we discuss an elliptic generalization of polylogarithms which
arises from the computation of the massive sunrise integral.

2. Iterated integrals and the program MPL

As an alternative to hyperlogarithms, we consider a class of iterated integrals over differential
1-forms in the set

ΩMPL =

{

dx1
x1

, ...,
dxk
xk

,
d (pa,b)

pa,b

∣

∣

∣

∣

1 ≤ a ≤ b ≤ k

}

(4)

where
pa,b =

∏

a≤i≤b

xi − 1. (5)

In order to obtain a framework of well-defined functions of the k variables x1, ..., xk, we construct
only iterated integrals which are homotopy invariant. In general, an iterated integral admits
this property, if and only if it satisfies the condition [40]

D [ω1|...|ωm] = 0 (6)

where the operator D is defined by

D [ω1|...|ωm] =
m
∑

i=1

[ω1|...|ωi−1|dωi|ωi+1|...ωm] +
m−1
∑

i=1

[ω1|...|ωi−1|ωi ∧ ωi+1|...|ωm]. (7)
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For example, among the two integrals

I1 =

[

dx3
x3

+
dx2
x2

∣

∣

∣

∣

d (x2x3)

x2x3 − 1

]

, I2 =

[

dx3
x3

∣

∣

∣

∣

d (x2x3)

x2x3 − 1

]

,

only I1 is homotopy invariant while I2 fails eq. 6. For any number of variables k, we can apply
algorithms described in [22, 23] to construct a basis of all homotopy invariant iterated integrals
over 1-forms in ΩMPL. Together with certain boundary conditions at a tangential basepoint (see
[23]), this construction provides a Q-vectorspace V (ΩMPL) of functions, including the class of
multiple polylogarithms.

MPL [21] is a Maple program for computations with this class of functions. Its main
algorithms [23] rely on the mathematical theory developed in [31]. One of the main purposes of
the program is the computation of definite integrals of the type

I =

∫ 1

0
dxn

q
∏

j p
aj
j

f (8)

where f ∈ V (ΩMPL) , q is some arbitrary polynomial in xn, all aj ∈ N and all pj are polynomials
of the type of eq. 5. For example, the program computes analytically

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

x41 (1− x1)
4 x92 (1− x2)

4 x43 (1− x3)
4

(1− x1x2)
5 (1− x2x3)

5 = −
11424695

144
+ 66002ζ(3).

Such integrals appear in various contexts. Examples are given in [34, 21, 23].
The other main purpose of the program MPL is the analytical computation of a certain class

of scalar Feynman integrals. For some Feynman graph G, consider the D-dimensional, scalar
L-loop integral

I(Λ) = Γ (ν − LD/2)

(

N
∏

i=1

∫ ∞

0

dxix
νi−1
i

Γ(νi)

)

δ (H)
Uν−(L+1)D/2

(F (Λ))ν−LD/2
, (9)

where N is the number of edges of G, νi are integer powers of the Feynman propagators, ν is
the sum of all νi, Λ is a set of kinematical invariants and masses and H = 1−

∑

i∈S xi for some
choice of S ⊆ {1, ..., N}. The terms U and F are the Symanzik polynomials in the Feynman
parameters x1, ..., xN (see e.g. [25]). Applying the methods of [58, 56, 35] we can expand such
a possibly divergent integral as a Laurent series in a parameter ǫ of dimensional regularisation,

I =
∞
∑

j=−2L

Ijǫ
j,

such that the integrals Ij are finite. The integrands of these Ij will involve Symanzik polynomials
of G and of related graphs.

In general, Symanzik polynomials are more complicated than the polynomials of eq. 5.
Therefore, the computation involves some additional steps. Before each integration, MPL
attempts to express the integrand in the form of eq. 8 by an appropriate change of variables.
Then the integral is computed and the result is mapped back to Feynman parameters, as a
preparation of the next integration. In order for all Feynman parameters to be integrated out in
this way, the (Symanzik) polynomials in the original integrand have to satisfy the condition of
linear reducibility as discussed in [32, 33, 60]. This and two further conditions can be checked
by the program. If they are satisfied, the integral can be computed automatically with MPL.
Examples are given in [21] and in a manual obtained with the program.
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Re (x)

Im (x)

1

τ

Figure 1. A lattice in the complex plane

A similar approach is followed by Panzer’s program HyperInt [59], based on hyperlogarithms,
which is publicly available as well, and related methods are applied by programs discussed in
[1, 2, 5, 3, 4, 30].

What if a given Feynman integral does not satisfy the criterion of linear reducibility? In
some cases, this problem is just an artefact of the parametrization and after some clever change
of variables, the above approach can still be applied1. However, there are as well Feynman
integrals, which can not be expressed in terms of multiple polylogarithms, no matter which
parameters or classes of iterated integrals we try to apply. For such Feynman integrals, we
have to turn to other frameworks of functions. The given success with multiple polylogarithms
suggests to give further generalizations of polylogarithms a try.

3. Elliptic generalizations

Let us recall the basic concept of an elliptic function. In the complex plane of a variable x ∈ C

we consider the lattice L = Z + τZ, where τ ∈ C with Im(τ) > 0 (the points in fig. 1). A
function f(x) is called elliptic with respect to L if

f(x) = f(x+ λ) for λ ∈ L. (10)

It makes sense to consider such a function f only in one cell of the lattice (the grey area in fig.
1), as its behaviour in all other cells are just copies. If τ is the quotient of two periods ψ1, ψ2 of
an elliptic curve E, this cell of the lattice is isomorphic to E and we can consider f as a function
on the elliptic curve.

Now we introduce a change of variables, considering the function f ′(z) of z ∈ C⋆ given by

f ′
(

e2πix
)

= f (x) .

Clearly, if f is elliptic with respect to L, then with respect to the new variable z, eq. 10 implies

f ′ (z) = f ′ (z · q) where q = e2πiλ for λ ∈ L. (11)

Now there is a simple idea for the construction of such elliptic functions. If f ′(z) can be
defined with the help of some other function g(z) as

f ′(z) =
∑

n∈Z

g (z · qn) ,

it satisfies eq. 11 by construction.

1 An example for such a case is the graph found to be irreducible in [24] and later computed in [48, 58].
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This concept can be applied to define elliptic generalizations of polylogarithms. A first version
of an elliptic dilogarithm was defined in [17] for the single-valued Bloch-Wigner dilogarithm.
Later the concept was generalized in various directions (see [66, 15, 55, 43]). Let us refer
particularly to [36] where elliptic polylogarithms of the form

Em(z) =
∑

n∈Z

unLim (z · qn) (12)

with a damping factor u are considered and where the concept is furthermore generalized to
establish multiple elliptic polylogarithms.

In the following section, a related class of functions appears in the context of a Feynman
integral.

4. The massive sunrise integral

The massive sunrise integral

S(D, t) =

∫

dDk1d
Dk2

(

iπD/2
)2

1
(

−k21 +m2
1

) (

−k22 +m2
2

)

(

− (p− k1 − k2)
2 +m2

3

)

is a Feynman integral which can not be expressed in terms of multiple polylogarithms. This
integral was extensively considered in the literature [11, 12, 13, 14, 16, 27, 39, 37, 38, 46, 47,
51, 62, 63, 65, 64, 26, 50, 41, 42]. In a recent computation of the case D = 2 and equal masses,
m1 = m2 = m3, for the first time an elliptic polylogarithm was applied explicitly to express
a Feynman integral [20]. Here we discuss further cases of the sunrise integral where elliptic
generalizations of polylogarithms arise.

At first, let us consider the integral with three different particle masses as Laurent series at
two and around four dimensions:

S(2− 2ǫ, t) = S(0)(2, t) + S(1)(2, t)ǫ+O
(

ǫ2
)

, (13)

S(4− 2ǫ, t) = S(−2)(4, t)ǫ−2 + S(−1)(4, t)ǫ−1 + S(0)(4, t) +O(ǫ). (14)

Here we have used t = p2. We begin with the result for exactly D = 2 dimensions, S(0)(2, t). In
this case, the Feynman parametric representation (eq. 9) of the sunrise integral only involves
the second Symanzik polynomial

F = −x1x2x3t+
(

x1m
2
1 + x2m

2
2 + x3m

2
3

)

(x1x2 + x2x3 + x1x3)

whose zero-set intersects the integration domain at three points P1, P2, P3. Together with each
possible choice of one of these points as the origin, this zero-set defines an elliptic curve.

In [7] the following functions are introduced:

ELin;m(x; y; q) =
∞
∑

j=1

∞
∑

k=1

xj

jn
yk

km
qjk =

∞
∑

k=1

yk

km
Lin(q

kx), (15)

En;m(x; y; q) =
{

1
i

(

1
2Lin(x)−

1
2Lin(x

−1) + ELin;m(x; y; q) − ELin;m(x−1; y−1; q)
)

for n+m even,
1
2Lin(x) +

1
2Lin(x

−1) + ELin;m(x; y; q) + ELin;m(x−1; y−1; q) for n+m odd.
(16)
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Notice that these definitions are related to the basic ideas recalled in section 3 but slightly
differ2 from the functions of eq. 12. By use of the differential equation of second order [57] for
S(0)(2, t), we obtain

S(0) (2, t) =
ψ1(q)

π

3
∑

i=1

E2; 0(wi(q); −1; −q) where q = e
iπ
ψ2
ψ1 . (17)

Here ψ1 and ψ2 are periods of the elliptic curve defined by F , which are given by complete
elliptic integrals of the first kind [6]. The three arguments wi(q), i = 1, 2, 3, are directly related
to the three intersection points P1, P2, P3 (see [7]).

While all terms in eq. 17 can be nicely related to the underlying elliptic curve, the situation
becomes considerably more complicated for the higher coefficients of eqs. 13 and 14. Here the
integrands under consideration depend on both Symanzik polynomials. However, the functions
defined in eqs. 15 and 16 remain to be useful. Generalizing this concept, we furthermore
introduce the multi-variable functions [10]

ELin1,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, ..., xl; y1, ..., yl; q)

=
∞
∑

j1=1

...
∞
∑

jl=1

∞
∑

k1=1

...
∞
∑

kl=1

xj11
jn1

1

...
xjll
jnll

yk11
km1

1

..
ykll
kml

l

qj1k1+...+jlkl

∏l−1
i=1 (jiki + ...+ jlkl)

oi
. (18)

By use of this set-up of functions, the coefficients S(1)(2, t) and S(0)(4, t) are computed in [8].
Furthermore it is shown in [10], that in the case of equal masses, every higher coefficient of the
two-dimensional case S(2 − 2ǫ, t) can be expressed in terms of these functions as well. This
result includes an explicit algorithm for the computation of these coefficients.

We want to point out that other elliptic generalizations of polylogarithms recently found
further applications to the two- and the three-loop sunrise graph [18, 19] and to integrals arising
in string theory [49, 28, 29].

5. Conclusions

With their double nature as nested sums and iterated integrals, multiple polylogarithms provide
a very useful framework for the computation of Feynman integrals. The Maple program MPL
serves for the computation of a certain class of Feynman integrals in terms of these functions.
The program is publicly available and supports computations with a class of iterated integrals,
which arise in other contexts as well.

The massive two-loop sunrise integral is a Feynman integral which can not be expressed in
terms of multiple polylogarithms. For the computation of various cases of this integral, a class of
elliptic generalizations of polylogarithms has shown to be useful. These and other appearances
of elliptic generalizations give rise to the hope, that when we have to leave the realm of multiple
polylogarithms, we might not have to dispense with all of its advantages.
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