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Abstract. We discuss algorithms for the analysis of hadronic final states, with application
to single top t-channel production, heavy Higgs decaying as H → W+W− in the lepton
plus jets mode, and others. In our examples, nature has arranged for the triple differential
decay rates in angles we call θ1, θ2, φ to be a short finite series in orthogonal functions,√
2πam

k,lY
m
k (θ1, φ)Y

m
l (θ2, 0) (summation implied), where the am

k,l are complex constants. This
observation can be exploited in two ways; first, a technique called orthogonal series density
estimation may be employed to extract coefficients am

k,l of the decay and physics parameters
related to these coefficients; second, an angular analog of the convolution theorem may be
employed to analytically deconvolve detector resolution effects from an observed signal.

The angular distributions of the decay products of massive elementary particles are a window
on fundamental physics. Nowadays, the main goal of precision measurements in Higgs physics
and top quark physics is to determine the strength and structure of the couplings amongst
fermionic and bosonic fields. One example is the coupling of the Higgs boson to the charged W
bosons, for which the effective interaction Lagrangian[1] is:

LHWW = m2
W

(√
2GF

)1/2

(1− v2

2Λ2
fΦ,2)HW+

μ W−μ +
g2v

2Λ2

fW
2

(W+
μνW

−μ∂νH)− g2v

2Λ2
fWWW+

μνW
−μν

(h.c. implied) where the complex constants fΦ,2, fW , and fWW are anomalous couplings.
Likewise at the Wtb vertex one has the effective interaction Lagrangian[2]

LWtb = − g√
2
b̄γμ(VLPL + VRPR)tW

−
μ − g√

2
b̄
iσμνqν
MW

(gLPL + gRPR)tW
−
μ + h.c;

here, the coupling constant VL = 1 in the standard model while the anomalous couplings
VR = gL = gR = 0. These couplings are affected by new physics and they affect the angular
distributions of top quark and Higgs decay products.

H → W+W− and t → Wb → l+νb are the two benchmark examples we choose to illustrate
the proposed technique for analyzing the angular distribution of Higgs and top quark decay
products. In the former example, we assume that the decay occurs in a lepton plus jets mode.
In the latter, we assume single top quark production in the t-channel, which produces polarized
top quarks at hadron colliders, followed by their semileptonic decay. Each of these modes is
characterized by three decay angles: In the case of the Higgs decay, we define θ1 (θ2) to be the
angle between the W− (W+) boson direction in the Higgs frame and the outgoing lepton or
quark in the W frame. φ is the angle between the decay planes of the two W bosons. In the
case of the top quark decay, we define θ1 to be the angle between a light “spectator” quark
from t-channel production, and the W boson in the top quark reference frame; θ2 is the angle
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between the W boson direction in the top quark rest frame and the lepton direction in the W
boson rest frame. φ is the angle between the plane defined by the spectator quark and the W
boson, and that defined by the W boson and the lepton.

We use the following shorthand notation. The product of spherical harmonics,
Mm

k,l(θ1, θ2, φ) ≡
√
2πY m

k (θ1, φ)Y
m
l (θ2, 0) is referred to as an M -function. Properties of the M -

functions derive from those of those of spherical harmonics. The M -functions are orthonormal,∫
Mm

k,l(θ1, θ2, φ)M
m′∗
k′,l′ (θ1, θ2, φ)dΩ

M = δk,k′δl,l′δm,m′ (1)

where dΩM = sin θ1 sin θ2dθ1dθ2dφ; their complex conjugates obey

Mm∗
k,l (θ1, θ2, φ) = M−m

k,l (θ1, θ2, φ),

and they obey a version of Gaunt’s theorem,

Mm
k,l(θ1, θ2, φ)M

m′
k′,l′(θ1, θ2, φ) = Wm,m′,M

k,l,k′,l′,L,KMM
K,L(θ1, θ2, φ) (2)

where
Wm,m′,M

k,l,k′,l′,L,K =
√
2πGm,m′,M

k,k′,K Gm,m′,M
l,l′,L ,

and

Gm,m′,M
l,l′,L =

√
(2l + 1)(2l′ + 1)

4π(2L+ 1)
Cm,m′,M
l,l′,L C0,0,0

l,l′,L

and the constants Cm,m′,M
l,l′,L are ordinary Clebsch-Gordan coefficients. In this paper summation

over repeated indices is always implied unless otherwise indicated.
The two benchmark decays, as well as plenty more in B-physics such as B0 → J/ψK∗, are

characterized by three decay angles and nature arranges for the triple differential decay rate at
tree level to have a simple form when expressed in M -functions:

ρ(θ1, θ2, φ) ≡ 1

Γ

dΓ

dΩM
= amk,lM

m
k,l(θ1, θ2, φ) (3)

In H → W+W−, the complex coefficients amk,l can be expressed in terms of the amplitudes A00,
ALL, and ARR for the Higgs to decay into a pair of longitudinal, left handed, or right handed
W bosons. All other transitions are forbidden by the conservation of angular momentum. From
the helicity formalism one obtains:

a00,0 =
1√
8π

(|AR|2 + |AL|2 + |A0|2
)

a00,1 = a01,0 =

√
3

32π

(|AL|2 − |AR|2
)
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)
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3√
128π

(|AR|2 + |AL|2
)
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√
3

640π

(|AL|2 − |AR|2
)

a02,2 =
1

40
√
2π

(|AR|2 + |AL|2 + 4|A0|2
)

a11,1 =
3√
128π

(A0A
∗
R +ALA

∗
0)

a11,2 = a12,1 =
3√
640π

(ALA
∗
0 −A0A

∗
R)

a12,2 =
3

40
√
2π

(A0A
∗
R +ALA

∗
0)

a22,2 =
3

20
√
2π

ALA
∗
R.

For single top quark t-channel production the transition amplitudes are A−1,− 1
2
, A1, 1

2
, A0,− 1

2
,

and A0, 1
2
to a left handed W boson and a left handed b quark, a right handed W boson and a
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right handed b quark, a longitudinal W boson and a left handed b quark, and a longitudinal W
boson and a right handed b quark. The angular coefficients are:
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8π
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,

P being the top quark polarization. In both cases, a real PDF requires that amk,l = a−m∗
k,l .

To estimate unknown angular coefficients amk,l from a dataset D = {(θ1i, θ2i, φi)}, i = 1, N ,
the usual recourse is some variant of a maximum likelihood fit. Another approach relies upon
the orthonormality of the M -functions. By projecting the density function ρ(θ1, θ2, φ) onto a
basis of M -functions we can express the coefficients as

amk,l =

∫
ρ(θ1, θ2, φ)M

m∗
k,l (θ1, θ2, φ)dΩ

M (4)

The Monte Carlo estimate of the integral is simply the average of the function Mm∗
k,l (θ1, θ2, φ),

over a realization of the PDF ρ(θ1, θ2, φ). The dataset D is, precisely, the desired realization.
So, the estimate of the coefficients amk,l comes down simply to, first, computing the value of

Mm∗
k,l (θ1, θ2, φ) for each event in the dataset and, second, taking the average. A complete

covariance matrix between all of the amk,l can be computed at the same time. The technique

is referred to as Orthogonal Series Density Estimation[3] (OSDE).
To illustrate this we show, in Fig. 1 on the left, an image of the American film actor Humphrey

Bogart (1899-1957). The image defines a two-dimensional PDF. In the middle of Fig. 1 we
show a realization of the distribution, generated using Von Neumann rejection. 100K points
were generated. On the right we show an OSDE estimate of the distribution, obtained using
harmonic functions as a basis.

Returning now to physics, we have used the Pythia Monte Carlo[4] to generate a sample of
heavy Higgs bosons with a mass of 200 GeV decaying to W boson pairs. An OSDE analysis
of the data sample was performed to determine the coefficients. Results are shown in Fig. 2.
In Fig. 3 we implement simple acceptance cuts and smearing (mostly due to missing energy
effects). These spoil the simple picture, but we can recover using a signal processing trick akin
to the convolution theorem. The convolution theorem says that the Fourier transform of a

convolution of two functions, f̃ ◦ g, is the product of the Fourier transforms of each function:

f̃ ◦ g = f̃ · g̃.
An analogous theorem, the Funk-Hecke theorem[5, 6] treats isotropic smearing on a sphere. If

ρ(θ, φ) =
∞∑
l=0

l∑
m=−l

cml Y m
l (θ, φ) and R(Θ) =

M∑
l=0

rlPl(cosΘ)
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Figure 1. Demonstration of OSDE. Left: original image. Middle: data generated according to
the original image. Right: estimate of the light density obtained with OSDE.

Figure 2. Projections of the joint PDF ρ(θ1, θ2, φ) determined using OSDE onto cos θ1 and
cos θ2 (left, middle) and φ (right), for a 200 GeV Higgs decaying to W+W−.

Figure 3. Projection of the joint PDF ρ(θ1, θ2, φ) with the inclusion of detector effects
determined using OSDE. Obvious distortions occur.

then the convolution is

(ρ ◦ R)(θ, φ) =

M∑
l=0

l∑
m=−l

dml Y m
l (θ, φ) where dml ≡ 2

2l + 1
rlc

m
l (no summation)

To handle the case of anisotropic smearing of the function ρ(θ1, θ2, φ) we develop our own
convolution theorem as follows. We describe the joint PDF for production at true angles θ1T ,
θ2T , and φT reconstructed at θ1R, θ2R, and φR, as a series in product M -functions:

R(θ1T , θ2T , φT , θ1R, θ2R, φR) = rk,l,m,k′,l′,m′Mm
k,l(θ1T θ2T , φT )M

m′
k′,l′(θ1R, θ2R, φR). (5)

and determine the coefficients from Monte Carlo, using OSDE. Using orthonormality (Eq. 1)
and Gaunt’s theorem (Eq. 2), one can relate the coefficients of a joint PDF to those, denoted
by gκ′,λ′,μ′,K′,L′,M ′ , of a conditional PDF, as follows:

aκ,λ,μW
μ′,μ,M
κ′,λ′,κ,λ,K,L · gκ′,λ′,μ′,K′,L′,M ′ = r1,K,L,M,K′,L′,M ′ (6)
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Here, the aκ,λ,μ are the known coefficients of ρ(θ1T , θ2T , φT ) taken from Monte Carlo.
For each value of K, L, M , K ′, L′, M ′, Eq. 6 is a matrix equation which can be inverted to

determine the coefficients gκ′,λ′,μ′,K′,L′,M ′ . To obtain the distribution of reconstructed angles,
one must convolve the distribution of true angles with the conditional probability to migrate
from the true angles the reconstructed angles. The coefficients of this distribution are:

Ak,l,m = gK,L,−M,k,l,maK,L,M . (7)

This is a matrix equation that can be expressed as

�A = G · �a (8)

This equation has to be inverted, but the matrix G is rectangular, and has an infinite number of
rows! So, we restrict to a finite subset of reconstructed coefficients and “invert” by minimizing

χ2(�a) = ( �A−G · �a)T ·W · ( �A−G · �a) (9)

which has the analytic solution

�a = VGTW �A where V = Cov(�a) = (GTWG)−1 and C = W−1 = Cov( �A) (10)

Increasing the number of coefficients increases the information used in the fit, but also increases
the noise. Some experimentation is required to optimize the cutoff.

1. Conclusion
We have outlined here a procedure for using Fourier tricks, particularly a kind of convolution
theorem, to deconvolve the effects of a particle detector from a reconstructed signal. We show
this procedure in action in Fig. 4. On the left we show reconstructed coefficients obtained
by applying the OSDE procedure on simulated data at reconstruction level. On the right we
compare the true coefficients with those obtained by the proposed deconvolution procedure.
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Figure 4. Left: angular coefficients amk,l of a simulatedH → W+W− signal in a lepton+jets final

state, at reconstruction level. Right: deconvolved angular coefficients (blue points) compared to
a truth-level estimate (red line). This demonstrates the viability of the method outlined herein.
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