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Abstract. The topic known as spontaneous symmetry breaking is afflicted with a high level
of confusion. Here the topic is discussed in some detail focusing on the various sources of
the confusion. A picture is presented, in which, with a small exception, and in contrast with
standard presentations, the vacuum state is symmetric, and yet, the successful phenomenology
usually associated with the subject is fully recovered.

1. Introduction

Spontaneous symmetry breaking (SSB) is regarded as a fundamental aspect in the understanding
of multiple situations in various areas of theoretical physics. The general idea is often described
as characterizing situations where the vacuum, or lowest energy state in the theory, does not
share all the symmetries of the theory. When the symmetry is a continuous one that condition
is then associated with the emergence of Nambu-Goldstone Bosons, or the Higgs mechanism,
when Gauge Symmetries are broken.

Despite its importance, the topic is plagued by a serious level of confusion and by multiple
misunderstandings, that can be found not only in research articles, but also in many leading
textbooks. Moreover, the discussions found in the literature are often rather unclear about
the general context in which they are carried on. In fact the SSB appellation is one that
invokes things occurring in time: “everything was symmetric when suddenly and spontaneously
a fundamental asymmetry simply appeared”. If that was what one was referring to, one might
then want to inquire about the timing of the symmetry breaking? and what exactly was then the
cause of that occurrence? Here, again confusion can arise if we mix up the simple kind of classical
statistical fluctuations, such as those associated with Brownian motion, and involve processes
taking place in time, with the more fundamental quantum fluctuations, that are nothing more
that the uncertainties that quantum mechanics normally associates with any given observable
in an arbitrary quantum state, and as such refer to no explicit process in time. This line of
inquire would rapidly take us into the realm of foundations of quantum mechanics, a topic that
would require an extensive discussion on its own. Fortunately however, and despite the wording,
the subject matter that concerns us here is something much simpler, namely, the question of
under what conditions does the lowest energy state of a system exhibit the symmetries of the
system’s dynamics. It is also clear that the question itself is only well posed when one is
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dealing with situations in which the notion of energy is well defined, something that, as we
know, requires stationarity of the space-time, and thus, from the onset, more general situations
including the cosmological setting itself, would lie beyond the regime under consideration.
Nonetheless confusion is abundant. Take the very important case of SSB in Gauge Theories
which is, in fact, one of those associated with the most serious misunderstandings. Let us
consider the following point: Gauge theories are theories with constrains (first order), and as it
is well known, the Dirac rules for quantization of such theories require the physical states to be
annihilated by the constraints. However the constrains are also the generators of infinitesimal
gauge transformations, and thus, all physical states are necessary invariant. If the vacuum were
not invariant, then it would follow that the vacuum could not be a physical state! Something
seems clearly wrong in the standard accounts.

There are some people that understand these issues very well, but given the vast state of
confusion that prevails in the literature on the subject it is also clear that there are many
colleagues for whom this article could be helpful. In fact, before our original work on the subject
[6] my colleague and I where quite confused ourselves. In order to help clarify the issues, in the
present review I discuss the relevant ideas and sources of misunderstandings in the following
contexts: Classical Mechanics, Quantum Mechanics, Global Symmetries in QFT for finite spatial
extension, Global Symmetries in QFT in the limit of infinite spatial extension, Gauge Theories,
and Statistical Mechanics. The goal would then be to identify and understand the fundamental
differences regarding SSB in the various contexts, when they do exist, addressing the sources of
confusion in each situation.

The manuscript is organized as follows: Section 2 deals with the simple case of discrete
symmetries both at classical and quantum mechanical level, while section 3 extends the
discussion for the continuous ones. Then we start addressing the case of infinite number of
degrees of freedom in section 4, which is devoted to quantum field theory and global (or rigid)
exact symmetries. The case of approximate symmetries in field theory is treated in section
5, while the situation in gauge theories is briefly discussed in section 6. Section 7 is devoted
to the important differences between the previous treatments and those that one usually finds
discussed in the statistical mechanical context. We end with a very brief discussion.

2. Classical and Quantum Mechanics, discrete symmetries.

Consider a system with a simple discrete symmetry P. In the classical theory there are two
possibilities: either the lowest energy state is invariant under P, or there is a degeneracy in the
state with lowest energy.

In the quantum theory the characterization of the situation is given by the existence of a
unitary (or anti-unitary, a possibility we ignore here for simplicity) operator P acting on the
Hilbert space H of the theory, P:H— #H, which commutes with the Hamiltonian PHP' = H .

Consider for instance a particle in one dimension with a symmetric double well potential.
Let the states |R) & |L), represent the localized wave-packets at the bottom of each well. The
symmetry is reflected by X X

PIRy=|L),  PIL)=|R). (1)

The vacuum state must be of the form |0) = %(|R> + €| L)). Now let us consider how do we

determine a?

If (RIH|L) = ¢ = |c[e’® # 0 then the minima of energy corresponds to o = 7 — 3. The
point is that quantum interference can reduce the energy! By judiciously selecting the overall
phase one can see that, of course, the vacuum is symmetric under P. However what happens if
¢ = 0?7 Then « is undetermined and the vacuum is degenerate. Even some asymmetric states
such as |R) or |L), are “vacuum states”. In this case a system prepared in the state |R), has
zero probability of tunneling to |L).
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All this is very simple and clear, however we must note that, if ¢ is fixed by the physical
situation and the case ¢ = 0 represents just an idealization, say, in the double well potential, the
limit in which the barrier becomes infinite, the degeneration related with ¢ = 0 is just a singular
aspect of the limit: Regardless of how small ¢ # 0 is, the vacuum is unique and symmetric,
and it also determines, in general, a unique and symmetric vacuum in the limit. We should
not confuse the limit ¢ — 0, with the case ¢ = 0. In general there is no “continuity” in
this limiting procedure. It is only when ¢ = 0 represents the actual physical situation rather
than an unphysical limit (for instance if the barrier is actually infinite) that we do have a
true degeneration in the lowest energy states and the possibility of a non-symmetric vacuum.
However, even then, among the multiplicity of vacua, there will be some that are symmetric
states.

Of course the actual state of the system, will depend on how it was prepared. In this case
energetic arguments do not allow one to select a unique quantum state. One cannot talk about
the symmetry of “ the vacuum” because there are symmetric and non-symmetric ones.

3. Mechanics Classical and Quantum: continuous symmetries
Consider now a system with two degrees of freedom and with a continuous O(2) or U(1)
symmetry. Let the lagrangian of the theory be:

1 . )
L= 5m(Xl2 + X)) - MXZ24+ X7 -2, (2)

The classical vacua form a degeneracy circle corresponding to X +iXs = ve'. Each one of these
classical states breaks the symmetry. What happens at the quantum level? The Hamiltonian,

in polar coordinates is:
1 1
H=_—P?
2m " + 2mr?

Note however that € is not a good coordinate on all the configuration space manifold. The

vacuum wave function is of the form Wy(r,6) = \/%—W‘I’O(T), where ®¢(r) is the vacuum of the

P 4 A(r? —v?)2 (3)

“radial hamiltonian”,

~ 1
dial 2 2 2,2
H(Taza)_—%Pr‘i‘)\(r _'U), (4)
as all dependence on 6 will increase the energy simply because the operator 5-— 1T2 P92 is a

positive definite operator. We thus have H (%) |®q) = Ey|®). Now, introducing the effective
Hamiltonian for variable 6 as :

. 1 1
Heop1(6, Py) = (®o|H|Bp) = (o|H 4% |Dy) 4- <‘I’0|WP92|<I>0> ~Ey+——=P;, (5

r2 2mu?
we see that it corresponds to a free particle (or a harmonic oscillator with zero spring constant).
This is the analog of a Nambu-Goldstone boson, a particle with zero mass. Note however that
the vacuum state is symmetric, and in particular (¥o|X1|¥g) = (¥o|X2|¥o) = 0. There are
Goldstone bosons even though there is no breakdown of the symmetry! However it is clear that
(Wo| X2|Wg) # (Wo|X1|¥g)?. That is, the state is characterized by strong quantum mechanical
“correlations”.
Consider next a system with three degrees of freedom to illustrate the analog of the (bosonic)

mass generation mechanism usually associated with SSB. We take the system’s Lagrangian to
be:

1. . .
L = 5m(Xl2 + XD+ (u/2)X2 = MXP 4+ X3 —v*)? —a(X?+ X3)X3. (6)

We note that there is no quadratic term in X3, so it is not a true harmonic oscillator.
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The Hamiltonian (with the same change of variables as before) is:

1

1
2mr2

1
P? + ZP?? +A(r? —vH)? + ar?X2. (7)

The vacuum wave function is now: ¥(r,0, X3) = 5= (r, X3), where ®((r, X3) is the vacuum
wave function for the two degrees of freedom system with Hamiltonian:

1
- 2m

1
H® P2+ \r? —v?)? + ﬂPg + ar’X3. (8)
Again, the vacuum is thus symmetric, as any dependence of the wavefunction on 6 can only
increase the energy. Again (Vo|X;|¥o) = (Vo|X2|¥o) = 0 and therefore there is no SSBI.

Comparing (7) and (3) we see that H' = H + ﬁPg + ar?X2 and from (8) and (4) we see
that H®) = glrediel) 4 P2 4 ar?X3.

Consider now the effective Hamiltonian for the X3 degree of freedom: H éff(Xg,Pg) =
(Uo|H'| W) where ¥q is the vacuum state of the previous example, ( i.e. the state described
bellow eq. (3)). In this case we thus have,

/ L 2 2 y2 L o 2 32
Heff(X37P3) = <\I]0|H|\I}O> + <\IJO‘(EP3 + ar X3)|\I]0> =~ ED + ﬂp3 + av X3, (9)
that is the X3 degree of freedom (D.O.F) has now become a true harmonic oscillator with
K = 2av?. We note the analogy with the mass generation mechanism, again occurring without
the breakdown of the symmetry by the vacuum state.

4. Quantum Field Theory and global symmetries

In this section we consider what part of the previous results extends to this situation? what
does not 7, and then, why? Consider the paradigmatic case corresponding to a theory with n
scalar fields ®;,7 = 1,...n, and a global O(n), symmetry described by the Lagrangian density:

L= (1/2)%710,9;0"®; + V(XI_, 0, ). (10)
Let us focus on the case n = 2 where the potential has the standard Mexican Hat shape
V = %(@% + ®3 — v?)2. It is convenient to make a change of field variables so that

@1 = (p+wv)cos(f), and Py = (p + v)sin(f). The conjugate momenta to these fields are:
7, =pand mp = (p +v)?0 , and the Hamiltonian density takes the form:
1 1 1 1 A
H = §7r§ + mwg + 5(61’/))2 - §(p + 0)%(9;0) + Z(pQ + 2up)2. (11)

All this is standard [1], [2]. More nuanced treatments also involve discussions of stability under
external perturbations and other considerations [3]. However, we want to focus on the simple
and very specific issue of the symmetry of the vacuum of the theory in the absence of external
factors, as a precise mathematical physics question. To this end let us now consider the situation
in more detail.

In order to quantize the theory we separate into free and interaction Hamiltonian densities.
The free part is:
w=tp2p Lo L Legepy Loz (12)
I =50 T a0 TGPl T UG TP
with m? = 2\v?. We will now review the quantization procedure focusing on the treatment of
the “zero mode”- the part which is position independent- of the field @, which is the DOF which
is supposed to acquire a non-vanishing expectation value in association with the SSB.

2
o T
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In order to proceed we consider the theory “in a box” with sides of length L with periodic
boundary conditions. At the end we will explore the limit L — oo. We note that even with L
finite, this is a theory with an infinite number of DOF, an issue that is sometimes mentioned
as leading to a fundamental difference with Quantum Mechanics regarding the symmetry of the
vacuum. It is well known that the question of number of DOF implies some differences between
the QFT and Quantum Mechanics. The question we must consider here is whether there is a
difference regarding the symmetry of the vacuum. Let us examine this in detail.

It is convenient at this point to make a canonical transformation to the new variables: ¢ = v
and 74 = (1/v)mg, so that the free Hamiltonian is now:

1 1 1
— 3 2 2
Hf_/da:[27rp+27r¢+2(a p)* + ( 10)% + mp] (13)
Making a Fourier expansion we have:

e 4 al ()eR) 7o (#,1) = =i Y [ 515 (@n(D)e ™ — a (1))

) p——T
-\ 2ka3 = 2L3
k k
(14)

where wr, = V k-k-+ m?, the components of k are those compatible with boundary conditions
and [ag, a,t,] = 0k (we use k instead of k in the indices to simplify the notation). In the same
way we expand the field ¢, while treating the zero mode separately. Thus we write,

(D)™ 4 b () (15)

0= % +Z¢Tﬁ

= T i3 e (bp(t)e R b 1)) (16)
k0

where wj, = |k|. The Hamiltonian is then,
1 1 k? 1 k? +m?
iy = [#y 0 = 3+ Sl o + 5007 + Dl e + 5™ (). an
E k

This is the Hamiltonian for a free particle plus that of an infinite collection of harmonic
oscillators. Note however that this is not exactly correct, because of the fact that that the
field coordinate ¢ takes values in the interval [0, 27v] and it is periodical. We ignore the range
restrictions on ¢(x) (as those are irrelevant regarding the determination of the vacuum) and
proceed with the analysis based on the Hamiltonian of the system which becomes:

1 1 1
Hy = [Hydto = 5+ Y lontalan + )+ whltlbi+ ) (1)
k

The lowest energy state or vacuum |0) is then clearly characterized by ag|0) = 0,b;]|0) = 0, &
70|0) = 0. The wave functional for the vacuum state is then the product of the wave functions
for all the modes:

Wy = @00 (6] @ VLlpr], (19)

where

V2 + m2 o L7 \/1?2

Uflor] = Nyexpl—~————pil.vk;  Uflon] = Npexp[-——¢}l.Vk £0  (20)
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with NV}, and N} normalization factors, while for the zero mode of the fieldp we have simply
@bg) [po] = m This shows that the zero mode of the field has a constant wave function.

Therefore there is no breakdown of the symmetry and in particular (0|®1]|0) = (0|®2|0) = 0.
Once more we have a situation where (0|®2]0) # (0|®1|0)%, so the vacuum state is characterized
by strong quantum correlations.

In fact, and independently of the composite nature of the operators: ¢1 = (p + v) cos(¢/v),
y ¢2 = (p + v)sin(¢/v), one can see that the contribution of the zero mode to the vacuum
expectation value of the field operators, vanish for any value of the “cut-off 7 (L). That is

Thus, it is clear that this will remain valid also in the limit L — oo. Therefore this
shows that the symmetry is not broken by the “vacuum”. In fact one can show that:
exp(ie [ mg(x)dx)|0) = |0), where the operator in the Lh.s is rotation operator U(1) with angle
€ around the axis of the Mexican Hat potential.

4.1.  Zero Mode, causality and “clustering”
In this subsection we briefly discuss a couple of objections to the overall picture we are presenting.
The first one concerns the issue of “clustering”. That is the often invoked requirement that, in
the vacuum state, there should not be correlations of arbitrarily long range. It is clear, that in
the examples we have considered, our vacuum fails to satisfy this condition. In our view this
requirement is based on misconceptions about causality and is often presented with erroneous
justifications. The usual argument is that unless the clustering requirement is enforced there
would be violations of causality. One can think of simple examples of physical situations where
there are long range correlations and where there are no violations of causality, such as those
arising in standard EPR-B experiments. Of course there is then the nontrivial issue of how the
state with such long correlations is prepared, or how did the system come into being set in such
a state. We certainly acknowledge that this is an interesting question but it is also clear that
this is a completely separate question from the identification of the vacuum or lowest energy
state, and whether that state shares the symmetries of the theory.

We note that when the vacuum wave function has a “width” # 0 in the variable ¢g, the
“clustering” property is violated. In fact the correlation A is

A(E,§) = (B(F. DB, 1)) — ($(F )G(F. ) = (/L% + 8(&,§) — (90)*/L* = 02 /L* + i@
21
where 04, is the uncertainty on the value of the zero mode.

Thus, in the vacuum we do have long distance correlations: characterized by A(Z,7) =
”23”2 + 6(Z,y) which are independent of our “universe’ s size”. Thus the clustering property is
violated, independently of the size of the universe. If this was a real problem, it would not be
resolved by taking the “vacuum” as a state sharply “picked” on ¢ (as normally considered in
the context of SSB), because such a state (which is not the true vacuum) would have violation
of “clustering” property for the n-point functions for m(z) instead of those of for ¢(z). It is
clear that, due Heisenberg’s uncertainty relation between 1y and 7o, one can not get rid of both.
The violation of “clustering” is a manifestation of the quantum nature of the zero mode, and it
survives in the L — oo limit.

Another issue that is sometimes raised in the present context is weather one can simply
ignore the zero mode, or just treat it classically. In fact in the compact case the zero mode
must be treated quantum mechanically, otherwise one violates causality. Let us evaluate the
commutator:

1 —tk-(z— 1 ik-(z— Y
k0

0 _ 0)

(22)
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where the last term comes from the zero mode. The point is that an explicit calculation shows
that for z — y space-like, the vanishing of the commutator arises due to cancellations between
the contribution coming from the sum and that of the zero mode: The conclusion is that the
zero mode must be treated quantum mechanically.

4.2. The L = 0o case vs. the L — oo limit.

For the case where L is finite, the energetic cost involved in localizing the zero mode of the
field 6 with an uncertainty 60 is §F = m which tends to 0 as L — oo. Here we should
recall the lessons from the Quantum Mechanical examples discussed at the beginning involving
a potential barrier: As we saw there, it was essential to consider whether the barrier is very big
and finite, or if it is truly infinite.

In the case L = oo the QFT construction faces a technical problem: We do not have a way
to normalize all functions on R (or R™). It is then argued in many treatments of the issue
that we should only be interested on the functions of compact support as they characterize the
excitations that “can be experimentally produced in a (finite) laboratory”. Following this logic,
one would, in effect, leave without a quantum treatment the zero mode of the field!. We should
be careful here and avoid a potential confusion: It is not that the zero mode becomes classical,
but that we do not have the mathematical tools to treat it quantum mechanically. However we
should note that it would be incongruous to construct a theory for the excitations of compact
support and use it to say something (like argue that there is SSB) about excitations which are
not in this class.

If we justify this way of proceeding on our supposed limitation of interest to discuss only those
excitations that we can produce in the laboratory, we could not then, come around and pretend
to discuss the global behavior of the fields (including effects that might have cosmological causes).
And particularly we would not be able to argue that those global modes that are left untreated
determine something we do see in the laboratory, like the masses of elementary particles.

In fact, we must consider what is the true relevance of the L = oo case? Our universe is clearly
not the infinite Minkowski space-time. That characterization is used only as an approximation
for a region which is very large compared to the size of our measuring apparatus. What is relevant
for such situations is then the limit, rather than the case of infinite Minkowski space-time.

When the limit is singular, as we saw, the appropriate thing to do is not “to consider the
Hamiltonian in the limit”, (among other things because we can’t treat the zero mode) and then
construct the theory, find the vacuum and do calculations, but rather, the appropriate procedure
is: first construct the theory for finite L, then find the vacuum, do all calculations, and then
take the limit L — oco. As we saw, in that case the treatment is transparent, the vacuum is
always invariant, and there is nothing like SSB.

5. QFT , approximate symmetries. SU(2) & SU(3) flavor and the mesons.

The paradigmatic case is that of the effective strong interactions of light hadrons (see for
instance [3]). The fundamental theory is QCD with a gauge group SU(3) and global
approximate symmetry SU(2); x SU(2)g: or Chiral symmetry (often one considers instead
SU(3)r, x SU(3)r). The lagrangian density for this theory is :

1 " —(i i —(s i ~(3) (i YOG
L= TEu P+ Y [0 D'y + 95 D v + 7 mild v + 0P 0] (23)
i=u,d i=u,d
where F),,, are the field strength tensors for the gauge fields (and are Lie-Algebra valued) and

@bg)L are the left and right components of the quark fields of various flavors 7. Here D, are
color-covariant derivatives v* are the Dirac matrices, and m; are the light masses for the quarks.
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The Lagrangian has various internal symmetries: SU(3) color (indices not shown) an 2(3) U(1)
flavor symmetries.

If we set the 2 quark masses equal, we have an extra SU(2) (flavor symmetry), and if we
set them m; = 0, we have an even larger symmetry: SU(2); x SU(2)g. In this case there
should be two sets of SU(2) conserved currents, denoted Ji/'(z) and J3"(x). The Ji*'(x) are
associated with SU(2) identical & simultaneous transformations of the left and right fermion
field components, while, J3(z), are related to opposite & simultaneous transformations of the
left and right fermion field components.

The J3"(z) has the same quantum numbers of the pion, allowing the successful
phenomenological identification known as (PCAC) [4]:

< O|J% ()| (k), ¢ >= ikF fre~kr5ae (24)

where |7m(k), ¢ > is the state with one pion of momentum k and flavor quantum number SU(2) : c.
The proportionality constant f, turns out to be connected to the weak decay of the pion, and
is thus measurable.

As far as we understand, the issue of the symmetry of the vacuum arises when considering
objects which are obtained through formal manipulations such as:

£ =~ [ a3 @) - ThO))0). (25)

The point is that if the symmetry was 100% respected by the vacuum then the r.h.s should be
0, as that expression is not invariant under the SU(2), axial transformations (note however that
it is invariant under the vector ones). The question is then: what happens in the un-physical
limit, in which the quark masses tend to zero ? The phenomenological argument is that the
Lh.s. (ie. fr) can not be expected to tend to zero in this limit, because its value 130MeV is
much larger than the value of m; =~ 5MeV . This argument supports a point of view according to
which, the symmetry would need to be broken even if m; = 0, a situation where the Lagrangian
is fully invariant.

The conclusion would be that the symmetry is spontaneously broken. This argument seems
to ignore that in general, such limits are singular (as we saw in the QM example). Let us see
a very clear example: Consider a free particle with mass M in 1-d: the state of lowest energy
corresponds to a plane wave with zero momentum, i.e. a constant function. In such situation
the expectation value (0|X0) is ill defined, but the state reflects the translational symmetry of
the lagrangian, (a different issue is that of its normalization and the fact that |¢(X)[>X is even
more divergent than |¢(X)[? ). p

Next let us consider a quadratic potential: V(X) = £ (X — 5)? . The vacuum wave function
2

_(z=5)
is ®(X) = Ne <2 , with o= \/;W The expectation value is now well defined: (0|X|0) =5
and the translational symmetry is clearly broken. However we note that the expectation value is

independent of K, and thus we have: limg_,0(0|X|0) = 5 which cannot be used to conclude
that, even in the case K = 0, the ground state should break the translational symmetry.

6. QFT Gauge Symmetries

This case has in fact been treated in detail by various authors [?, 8] and thus we will only
devote a little space to them here. The central point is that these theories have, even at the
classical level, a very serious problem: At the pure mathematical level they do not have a
well-posed initial value formulation. This is easy to see by considering a given solution of the
evolution equation with certain initial conditions at say the hypersurface ¢ = 0 in Minkowski
space-time. One can consider a gauge transformation which is the identity in a neighborhood
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of the initial hypersurface and becomes nontrivial elsewhere. The result will be again a solution
of the equations of motion corresponding to the same initial conditions as the first one, and
differing from it elsewhere in the space-time. The problem disappears once one identifies the
gauge invariance as a redundancy in the description: Two solutions of the field equations that
differ by a gauge transformation represent the same physical solution!

At the quantum level, we can think of the states of the system as wave functionals ¥[¢, A,]. It
is clear that for the theory to make sense, when evaluating the functional on two configurations
that differ by a gauge transformation, the functional ¥ should give the same value. That is, all
physical states must be gauge invariant.

The vacuum must be a physical state and therefore it needs to be gauge invariant. There is, in
this sense, simply no room for SSB. However one finds statements affirming that in connection
SSB non invariant fields acquire vacuum expectation values and thus the vacuum brakes the
symmetry [1]. In fact in the standard model of particle physics the symmetry breaking by the
vacuum characterized by a non-vanishing expectation value of the scalar fields in the theory is
supposed to be responsible for generating masses for some of the gauge bosons W+W~ and Z°
and for the fermions in the theory.

The key to clarify the situation lies in the recognition that much of the treatment that is
presented in many places is performed in schemes where one “fixes the gauge”. That is, one is
no longer working with the full theory but has instead chosen to work with a limited number
of representatives of each equivalence class of field configurations (or to one such representative
if in fact the gauge was fixed completely, something that is known to be generically impossible
5))-

As we have seen in various examples, the analogous of the mass generating mechanism works
perfectly well without the need for the vacuum to break the symmetry, and that is exactly what
happens in the present case. However in order to see this explicitly it is clear that one has to
work in settings where the gauge has not been fixed. The reader might want to consult [6] to
see this at work. The point is that it is incongruent to “fix the gauge” and then argue that
somehow the gauge symmetry has been spontaneously broken.

7. Statistical Mechanics, Ferromagnetism.

One should not confuse the situations treated in Statistical Mechanics with those of Quantum
Mechanics. They have many similarities but they are not the same. The starting point of the
latter is the consideration of a large ensemble of identical systems. One is interested on ensemble
averages of some physical quantities. Under certain conditions (ergodicity) one expects those to
coincide with time averages for a particular system.

The standard applications involve some additional assumptions, particularly in the treatment
of quantum systems. These include the interaction of the system with external D.O.F. often
characterized as a thermal bath. Even at T' = 0, the environment has a fundamental influence:
It acts as the physical source of the ergodicity and of the de-coherence, which justifies the
“random a priori random phases” hypothesis (see for instance [9]) for the elements of the
ensemble, which is at the basis of most Quantum Statistical Mechanical treatments. This is
required to justify various aspects of the treatments of the quantum system with the use of
ensembles (micro-canonical, canonical, and gran canonical).

In contrast with the ordinary Quantum Mechanics, the treatment is fundamentally designed
to deal with open systems which justifies in Stat. Phys. the considerations of, for instance, a
system in equilibrium at a temperature 7', which is represented by the Gibbs density matrix:

p(T) = e = 3" it fun) (i, (26)

instead of treatments designed to consider essentially pure states as is often the case in quantum
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theory. ( In the above expression H is the system’s hamiltonian, {|1s)} a basis of its eigenstates
with energies F; and k is Boltzman’s constant.) We should be careful not to forget about these
when comparing or relating results of one with those of the other.

7.1. Ferromagnetism.

As a very illustrative example we consider a system of N atoms with spin 1/2 in a fixed
arrangement. We further assume that each atom interacts only with an external magnetic field
B and with the nearest neighbors. The Hamiltonian is thus,

N N
H=-J Y & &-pB-> s (27)
a, b=1 a=1

where J and p are constants. The analysis is usually based on the canonical ensemble at
temperature 7: One computes the Helmholtz’s free energy A(T, B), and from it one obtains the
magnetization trough the standard relation,

0A

M(B,T) = (520

(28)
The so called spontaneous magnetization, often invoked as an analogy of SSB in QFT,
corresponds to the case in which M(0,7) # 0 (i.e, magnetization without external B field)
which happens when T' < T, where T, is called the critical temperature. The point is, however,
that in this case the derivative does not exist !! This is hidden by the use of spherical coordinates
which are bad coordinates at the origin. In fact in order to be precise, the equation above should

be written as: o .
M(B,T) = ~(VpA) (29)

where the B appearing in eq. (28) above, would correspond to the radial coordinate representing
the magnitude of the vector B. The feature that we are dealing with here is in fact an extreme

Figure 1: shows the actual shape
of the function A(T,B) in the
thermodynamic limit as a function

/ of B in a two dimensional case. It is
clear that at the origin the function
is not differentiable.

sensitivity to external fields that is reached in the thermodynamic limit N — oco. At any point
different from the origin (é = 0), the function A is differentiable and M is nonvanishing, nor does
it vanish as B — 0. However the limiting behavior is dependent on the direction of approach to
the origin, so strictly speaking the limit does not exist. It is nonetheless worth noting that in the
realistic cases with finite NV, the function A is smooth at the origin (é = 0) and the symmetry
of the situation then implies M = 0. That is, we do not seem to have here something we might
call spontaneous symmetry breaking.

However we must recall that the treatment above refers only to a statistical ensemble, while
any consideration of an individual and finite system characterized by (27) leads, even when
B=0toa non-vanishing magnetization. Let us consider this last aspect of symmetry breaking,
in more detail, in order to identify the differences with what we had faced before.
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The first observation is that the Hilbert space of each individual D.O.F. does not have
symmetric states: If |7, +) is a spin pointing in the +7 direction, we might try to built and
rotationally invariant state as the superposition:

linvariant) = / dg D%(Q)Wa +) (30)
SU(2)

where the matrix D'/2(g) represents a Wigner rotation with g in SU(2). The point however is
that this gives as a result simply 0, that is the null vector in the Hilbert space. There is also

no invariant state for the case of N spins when N is odd. That makes it hard to consider the
limit N — oco. There are of course symmetric states for IV even. In the case N = 2 these are
the well known singlet states. However their misalignment implies an energetic cost according
to 27. This seems to be a fundamental difference with the previously considered cases.

A second aspect worth noting refers to the statistical nature of the problem we faced and the
fact that we deal in practice with an open quantum system. The ferromagnet is described in
Statistical Mechanics by a density matrix (not a pure state), and this CAN be symmetric. For
instance, for a single spin :

N

pis = [ dg DH)fa 1D ) = 3T (31)
SU(2)

where I is the unit matrix, which is in fact rotationally invariant. This illustrates that the
conclusions regarding the issue of symmetry of the ground state of an individual quantum system
can be very misleading if one relies on a standard statistical mechanical treatment. In particular
it is worth noting that the treatment of individual systems composed of large number of spins
can in fact be rather complex and cumbersome, as illustrated by works based on Majorana
stars[10] or quantum constellations[11].

Analogously, for a system with N spins, the density matrix describing the ferromagnet (with
B = 0) at low temperature, is spherically symmetric. However each of the possible states
corresponding to an element in the ensemble, the one identified by observation, breaks the
symmetry, and this corresponds to the selection of one of the degenerate vacua. This associated
with the possibility, exemplified with the case N = 1, that the appropriate fully symmetric
superposition of states, may not exist.

Moreover, when considering, in practice, the occurrence of “SSB” in this case, one in fact is
looking for much more than in previous cases: Not only the state should not be symmetric, but
it should be macroscopically non-symmetric. That is, somehow small domains of non-vanishing
magnetization that could in principle lead to zero spatially averaged magnetization, should
instead become correlated leading to a macroscopic magnetization of the individual sample.
The fact that this is what one finds in the actual dealings with ferromagnets seems to connected
with the EXTREME susceptibility to external fields which we saw in the evaluation of the
magnetization.

Finally we should be mindful of the potential for confusions that arise due to the fact that
a density matrix can be used to represent various things: i) The state of an ensemble, in which
each of the elements is in a pure state, ii) A sub system which has no individual state (because
it is part of a larger system) in which there are correlations between our subsystem and the rest.
iii) We could have an ensemble of subsystems, each of which is as in ii). The reader is invited
to see the discussion concerning proper and improper mixtures in [12], for further aspects of the
importance of these distinction. The point is that our interest is establishing when an individual
system’s state is symmetric and the treatments involving ensembles tend to be obscure as this
issue is concerned simply because, from the onset, one is dealing with a very large collection
(generally infinite) of systems.



MWPF IOP Publishing
Journal of Physics: Conference Series 761 (2016) 012075 doi:10.1088/1742-6596/761/1/012075

8. Discussion

As we have seen the treatments of the general subject of SSB and related topics generate a great
deal of confusion, even at the text-book level. We touched on various representative aspects
of those. In particular we showed that at the level of quantum filed theory, the most popular
views are mistaken: In the case of rigid (non gauge) symmetries we saw that for the realistic
situations involving finite spatial regions there is no SSB, while the considerations of infinite
spatial extent required distinguishing the limit L — oo (where again there is no SSB) from the
physically irrelevant and mathematically problematic case L = oc.

We showed that a treatment devoted to the case where L is allowed to be extended to the
L — oo limit, successfully accounts for the standard phenomenological aspects such as the
emergence of Nambu-Goldstone bosons and the Higgs mechanism, while presenting a picture
where the vacuum state is fully symmetric.

We briefly dealt with the case of gauge symmetries where again we hope to have clarified the
situation and concluded there is simply no room for a vacuum state that breaks the symmetry.
We ended considering the quantum statistical mechanical treatment case of ferromagnets, as
one of the few examples where we truly face something we might call SSB.

Hopefully this manuscript will contribute to some extent in clarifying the various issues that
tend to obscure many treatments of this very important topic in theoretical physics. For a
more detailed discussion of all these issues we suggest consulting the work [6] and the references
therein.
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