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Abstract. For the flavour-singlet heavy quark system of charmonia, we compute the masses
of the ground state mesons in four different channels: pseudo-scalar (7.(15)), vector (J/¥(15)),
scalar (x¢,(1P)) and axial vector (x., (1P)), as well as the weak decay constants of the 7.(15)
and J/W(1S). The framework for this analysis is provided by a symmetry-preserving Schwinger-
Dyson equation (SDEs) treatment of a vector x vector contact interaction (CI). The results found
for the meson masses and the weak decay constants, for the spin-spin combinations studied,
are in fairly good agreement with experimental data and earlier model calculations based
upon Schwinger-Dyson and Bethe-Salpeter equations (BSEs) involving sophisticated interaction
kernels.

1. Introduction

First explorations for heavy mesons, both charmonia and bottomonia, with a consistent use of
the rainbow-ladder truncation in the kernels of the gap and Bethe-Salpeter equations (BSEs),
were undertaken by Jain and Munczek in Ref. [1]. They found the mass spectrum and the
decay constants of pseudoscalar mesons in good agreement with experiments. This work was
repeated with the Maris-Tandy model for éc bound states in Refs. [2-4]. We use a symmetry
preserving vector-vector contact interaction (CI) [5-9]. This model provides a simple scheme
to exploratory studies of the spontaneous chiral symmetry breaking and its consequenses like:
dynamical mass generation, a quark condensate, the rise of goldstone bosons in the chiral limit
and quark confinement. The results obtained from the CI model are quantitatively comparable
to those obtained using sophisticated QCD model interactions, [10-12].

We employ this interaction for the analysis of the quark model heavy mesons for spins J = 0, 1
and study the mass spectrum and weak decay constants for charmonia. Without parameter
readjustment, we find good agreement with charmonia masses. However, we need to modify
the set of parameters to simultaneously account for the weak decay constants of the 7.(1S) and
J/¥(1S), and the charge radius of 7.(15).

2. The Tools
2.1. The Bethe-Salpeter and the Gap Equations
Meson bound states appear as poles in a four-point function. The condition for the appearance

of these poles in a particular J©¢ channel is given by the homogeneous BSE [13-15]
d'q rs
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where x(q; P) = Sy(q+)Tu(q; P)Sg(a-); ¢+ = ¢+ nP, g- = q¢— (1 —n)P; k (P) is the relative
(total) momentum of the quark-antiquark system; Sy is the f-flavour quark propagator; I (¢; P)
is the meson BSA, where H = fg specifies the flavour content of the meson; r, s,t, u represent
colour, flavour, and spinor indices; and K is the quark-antiquark scattering kernel.

The f-flavour dressed-quark propagator, Sy, that enters Eq. (1) is obtained as the solution
of the quark SDE, the so called gap equation [16-19]:!

S;l(p):i’y'p—i-mf%—ﬁf(p), (2)
4 a
S1(0) = [ Dpelo = ) 5 S5 @), Q

where g is the strong coupling constant, D,,, is the dressed-gluon propagator, I'}, is the dressed-
quark-gluon vertex, and my is the bare f-flavour current-quark mass.

Both D, and I'j, satisfy their own SDE, which in turn are coupled to higher n-point functions
and so on ad infinitum. Therefore, the quark SDE, Eq. (2), is only one of the infinite set of
coupled nonlinear integral equations. A tractable problem is defined once a truncation scheme
has been specified, i.e., once the gluon propagator and the quark-gluon vertex are defined.

2.2. Axial-Vector Ward-Takahashi Identtiy
The phenomenological features of chiral symmetry and its dynamical breaking in QCD can be
understood by means of the axWTI. In the chiral limit, it reads

—iP,T5,(k; P) = S (ke )vs + 758 (ko). (4)

The axWTI relates the axial-vector vertex, I's,, the pseudoscalar vertex, 5 and the quark
propagator. This in turn implies a relationship between the kernel in the BSE and that in the
quark SDE. It must be preserved by any viable truncation scheme of the SDE-BSE coupled

system
dq
/(27_‘_)4 Ktu;r5<k, q; P) [75S(q—) + S(q+>75]sr - [E(k'i‘)f% + ’752(]{:—)]1511, ) (5)
thus constraining the content of the quark-antiquark scattering kernel K (p, q; P) if an essential
symmetry of the strong interactions, and its breaking pattern, is to be faithfully reproduced.

2.8. Rainbow-Ladder truncation and the Contact Interaction
We employ a momentum-independent vectorxvector CI this interaction for the analysis of the
quark model charmonia spectrum. Therefore, we use [7]

92D,uu(k3) = 5,ul/ = 725;1117 (6)

in Eq. (3), where my = 800 MeV is a gluon mass scale which is in fact generated dynamically
in QCD [20], and aqg = 0.937 is a parameter that determines the interaction strength. For the
quark-gluon vertex, the rainbow truncation is used:

a

Thpa) = 5 7

1 We work in a Euclidean metric where: {7V, v} = 20mur; '7;2 = Yu; Y5 = Yay1Y2Y3; 6 b = Z?zl a;b;; and P,
timelike = P? < 0.
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Once the elements of the kernel in the quark SDE have been specified, we proceed to obtain and
analyse its solution. Using Eq. (6) and Eq. (7), the quark equation, Eq. (2), takes the form

STV p) = i p+my + S /d4q S4(q) (8)
=qy- m —
whose solution is of the form
Sitp) =iy -p+ My, 9)

since the last term on the right-hand side of Eq. (8) is independent of the external momentum.
The momentum-independent mass, My, is determined as the solution of

M > 1
memg Jo 3+Mf

Since Eq. (10) is divergent, we have to specify a regularization procedure. We employ the proper
time regularization scheme, [21]

+1M2 = /dTe T(s+M?) —>/TIR2dTe (M)
s

Mf:mf+

efTUV(s+M2) 7TIR(S+M2

= 11
8+M2 ’ ( )

where 7'I2R and T%V are, respectively, infrared and ultraviolet regulators. A nonzero value for
7iR = 1/Ar implements confinement by ensuring the absence of quark production thresholds
[22]. Furthermore, since Eq. (6) does not define a renormalizable theory, Ty = 1/Ayy cannot
be removed, but instead plays a dynamical role and sets the scale for all dimensioned quantities.
Thus

My 2
Mf:mf'i‘chl(Mf;TlRaTUV); (12)
where ( 2)1/
M
Caﬁ(MQ;TIR7TUV) = F(B) F(ﬁ - Q’T%VM277—12RM2)7 (13)

with v = o — (8 — 2) and I'(a, 21, 22) is the generalized incomplete gamma function.

2.4. Classification of BSA in a Contact Interaction

We are interested in the static properties of several mesons. We begin with their classification
and the general form of their BSA in the CI we are working with. Table 1 lists the spin quantum
numbers of the quark model mesons under study.

L JPY Type L Jre Type
0 0 F Pseudoscalars 1 0FF Scalars
0 17— Vectors 1 17,17~  Axial Vectors

Table 1. Quark model mesons
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With the dependence on the relative momentum forbidden by the CI, the general form of the
BSAs for the mesons listed in Table 1 are [23]:

1
P07+(P) = |:iE0+ + m’)/ : PFO+:| s (14)
F0++ (P) == 1E0++ 5 <15)
1
[, (P) = ’Y,:fE1" + WUWPVFF* ) (16)
1
F1++M(P) = 7 |:7/7;E1++ + WGMVPVF1++:| , (17)

where M is a mass scale.

2.5. Normalization of the BSA
Since the BSE is a homogeneous equation, the BSA has to be normalized by a separate condition.
In the Rainbow-Ladder truncation of the BSE, that condition takes a simple form (n = 1):

4
Py = Negp [ T Cu(-Q)S (0 (@ (a)] (18)

at Q = P, with P? = —m%, , which ensures that the residue at the mass pole is unity. Here, I'y
is the normalized BSA and I'y its charge conjugated version.

2.6. Pseudoscalar and Vector Decay Constants
Once the BSA has been normalized canonically, we can calculate observables from it. The
pseudoscalar leptonic decay constant, fy—+, is defined by

4
Pufos = Ne /(;173 Tt 7 (4 ) To-+ (P)S(q-)] (19)

Similarly, the vector decay constant, f;--, is defined by

N, [d%q
my——f1-—- = 3/(271)4 Tr [”)’uS(QJr)FHr*S(Q—)} ) (20)
where m;-- is the mass of the 17~ bound state, and the factor of 3 in the denominator comes
from summing over the three polarizations of the spin-1 meson.

3. Results

The mass and BSA of a meson depend on its quantum numbers and can be found by solving
Eq. (1). In order to do this, a fictitious eigenvalue, Ap, is introduced to the bound state
equation. Thus, the mass of the bound state in a particular channel, myg, will be such that
Ag(P? = —m?2;) = 1, where P is the meson’s momentum. In any channel, the form of the
homogeneous BSE for the CI is

Ku(mp) - Uu(mp) = Ag(mp)Ca(m), (21)

where K is a 2 x 2 matrix, and the subscript H indicates the dependence of the explicit
expressions on the quantum numbers of the meson under consideration, see Egs. (14-17).
Equation (21) is an eigenvalue equation for the vector I'y(mpy) = (Ex(myg), Fy(mg))? with
solutions for discrete values of P? = —qu. Explicit expressions for every channel given in

Table 1 in the reference [24].
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masses

Mne(1S) M/ w(1S)  Mxe,(1P)  Mixe (1P)
Experiment [29] 2.983 3.096 3.414 3.510

Contact Interaction 2.983* 2.979 3.412 3.442
- - 3.293 3.344

JM [1] 2.821 3.1 3.605 -

BK [25] 2.928 3.111 3.321 3.437

Slrp [4] 3.035 3.192 - -

RB1 [26] 3.065 - - -

RB2 [26] 3.210 - - -

decay constants
Experiment [29] 0.361 0.416 - -
Contact Interaction 0.084 0.080 - -

Table 2. Ground state charmonia masses, BS amplitudes and decay constants obtained with
the light sector parameter set: my = 0.8 GeV, arr = 0.937, A;g = 0.24 GeV, Ayy = 0.905 GeV.
The current-quark mass is m. = 1.578* GeV, and the dynamically generated constituent-like
mass is M, = 1.601 GeV. The value immediately below the CI results is obtained without
a spin-orbit coupling gs, = 0.24. For a direct comparison, we quote values from other SDE
approaches to calculate the masses of low lying charmonia. Dimensioned quantities are in GeV.
(* = The current quark mass was fitted to obtain the mass of the pseudoscalar meson).
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Figure 1. Contact interaction results for the ¢c mass spectrum using model parameters fitted
in the light sector, see Table 2 PDG-labeled data is from [29].

3.1. Charmonia mass spectrum

The parameter set used in this calculation is the same as that obtained used in the light sector [5].
Only the current-quark mass for the charm quark is an input parameter, and it is fixed such
that the experimental mass of the pseudoscalar is reproduced. The rest of the meson masses
are predictions of the model. As can be seen from Table 2, the predictions for the masses of the
remaining mesons are in good agreement with the results obtained from more sophisticated SDE-
BSE model calculations [25,26], lattice QCD for the charm sector [27,28] as well as experimental
values [29].



MWPF IOP Publishing
Journal of Physics: Conference Series 761 (2016) 012071 doi:10.1088/1742-6596/761/1/012071

On the other side, Table 2 also shows that the pseudoscalar and vector decay constants,
for the model parameters used, are strongly underestimated, in disagreement both with model
calculations and experimental data. As noticed in Refs. [30-32], the decay constant is influenced
by the high momentum tails of the dressed-quark propagator and the BSAs. This high
momentum region probes the wave-function of quarkonia at origin. The CI, on the other hand,
yields constant mass with no perturbative tail for large momenta. Therefore, this artefact of
quarkonia has to be built into the model in an alternative manner. We know that with increasing
mass of the heavy quarks, they become increasingly point-like in the configuration space. The
closer the quarks get, the further the coupling strength between them decreases. Therefore, we
cannot expect the decay constants to be correctly reproduced with the parameters of the light
quark sector. The next step is to consider the possibility of extending the simple CI model
to the heavy sector by reducing the effective coupling. However, the reduction in the strength
of the kernel has to be compensated by increasing the ultraviolet cut-off. This makes sense by
observing that the Ayy (highest energy scale associated with the system) used in the light quark
sector is, in fact, less than the current charm quark mass. Therefore, it needs to be modified.

3.2. Contact Interaction Model for Charmonia

We look a balance between the effective coupling and the ultraviolet cut-off to describe the static
properties of charmonia. For this purpose, we set out to redefine the parameters of the CI to
study the masses and weak decay constants.

masses
Mne(1S)  MJ/w(18)  Mxe,(1P)  Mxe (1P)
Experiment [29] 2.983 3.096 3.414 3.510

Contact Interaction 2.950*  3.129 3.407 3.433
3.194 3.254
JM [1] 2.821 3.1 3.605 -
BK [25] 2.928 3.111 3.321 3.437
RB1 [26] 3.065 - - -
RB2 [26] 3.210 - - -
decay constants
e Tiw
Experiment [29] 0.361 0.416
Slrp [4] 0.239 0.198
S3cep  [4] 0.326 0.330
BK [25] 0.399 0.448

Contact Interaction 0.305 0.220

Table 3. Ground state charmonia masses and decay constants obtained with the best-fit
parameter set: my, = 0.8GeV, arp = 0.937/20, A;g = 0.24GeV, Ayy = 2.788GeV. The
current-quark mass is m. = 0.956* GeV, and the dynamically generated constituent-like mass is
M. = 1.497 GeV. The value immediately below the CI results is obtained without a spin-orbit
coupling gs, = 0.24/3. Dimensioned quantities are in GeV. (* = This parameter set was obtained
from a best-fit to the mass and decay constant of the pseudoscalar and vector channels).

We retain the parameters my and A of the light sector. Modern studies of the gluon
propagator indicate that in the infrared, the dynamically generated gluon mass scale virtually
remains unaffected by the introduction of heavy dynamical quark masses [33,34]. The rest of
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Figure 2. Contact interaction results for the ¢c mass spectrum, see Table 3. PDG-labelled
data is taken from Ref. [29].

the parameters are obtained from a best-fit to the mass and decay constant of the pseudoscalar
(n.) and vector (J/W¥) channels.

One can now readily calculate the masses of the ground state pseudo-scalar, vector, scalar,
and axial vector mesons. The results are shown in Table 3 and Fig. 2. They are in very
good agreement with experimental values and comparable to the best SDE results with refined
truncations.

The decay constants for the 7.(15) and J/W¥(1S) channels are reported in Table 3. For
the pseudoscalar meson, the result aligns nicely with the experimental value. However, this is
not exactly the case for the vector channel. Furthermore, we note that the decay constant for
J/¥(1S) is smaller than that for 7.(15). The correct ordering can be recovered by reducing the
interaction strength by a large factor. However, this is something we consider contrived and,
therefore, not pursued further. Notice that one of the SDE results yields the J/W(1S) decay
constant even smaller than our value [4].

4. Conclusions

We compute the quark model ground state spin-0 and spin-1 charmonia masses and decay
constants using a rainbow-ladder truncation of the simultaneous set of SDE and BSE with
a CI model of QCD, developed and tested for the light quark sector [5-9]. As the model is
non-renormalizable, we employ proper time regularization scheme which ensures confinement is
implemented through the absence of quark production threshold. Moreover, the relevant Ward
identities and the low energy theorems such as Goldberger-Triemann relations are satisfied.
Without parameter readjustment, we find that the masses of the studied mesons are in
reasonably good agreement with experimental data and other model calculations. Moreover,
the Gell-Mann—Oakes—Renner relation, valid for every current-quark mass in the pseudo-scalar
channel, is always satisfied. However, the decay constants of pseudo-scalar as well as vector
mesons are significantly underestimated.

We realize that the extension of the CI model to the heavy sector requires a reduction of the
effective coupling, which mimics the high momentum tail of the quark mass function obtained in
the SDE studies of QCD [30-32]. We only have to ensure that the reduction in the strength of the
kernel is appropriately compensated by increasing the ultraviolet cut-off, a natural requirement
for studying heavy quarks. We find that with a modified choice of two parameters, not only
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the masses of the ground state mesons, i.e., pseudo-scalar (n.(15)), vector (J/¥(1S5)), scalar
(Xeo (1P)), and axial vector (xc, (1P)), but also their weak decay constants, are in much better
agreement with the experiments [29] as well as earlier SDE calculations with QCD based refined
truncations [25]. This is an encouraging first step towards a comprehensive study of heavy
mesons in this approach. Further steps will involve flavored mesons and baryons. Our goal is to
provide a unified description of light and heavy hadrons within the CI model.

Full discussion and details are found in our work [24].
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