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Instituto de F́ısica y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,
Edificio C-3, Ciudad Universitaria, Morelia, Michoacán 58040, México.
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Abstract.
A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson

(SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their
application to hadron physics is given. These equations provide a non-perturbative continuum
formulation of QCD and are a powerful and promising tool for the study of hadron physics.
Results on some properties of hadrons based on this approach, with particular attention to
the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their
comparison to experimental data are presented.

1. Introduction
The quantitative understanding of the properties of strongly interacting matter in all its
manifestations and forms in terms of the fundamental theory, Quantum Chromodynamics, is
without a doubt one of the most challenging and exciting problems in modern science [1, 2, 3,
4, 5, 6, 7]. QCD is the fundamental theory of quarks, gluons, and their interactions. However,
the QCD Lagrangian does not by itself explain the data on strongly interacting matter, and it
is not clear how the observed bound states, the hadrons, and their properties arise from QCD.
Neither confinement nor dynamical chiral symmetry breaking (DCSB) is apparent in QCD’s
lagrangian, yet they play a dominant role in determining the observable characteristics of QCD.
The physics of strongly interacting matter is governed by emergent phenomena such as these,
which can only be elucidated through the use of non-perturbative methods in QCD [4, 5, 6, 7]

The SDE-BSE are a well suited continuum approach to non-perturbative QCD and hadron
physics [5, 6, 7] since they provide access to infrared as well as ultraviolet momenta, thus giving
a clear connection with processes that are well understood because QCD is asymptotically
free. The SDE-BSE form an infinite tower of coupled non-linear integral equations that must
be truncated in order to define a tractable problem. Because QCD is asymptotically free the
interaction kernel in each SDE is known within the perturbative domain and hence any model
dependence is restricted to the long-range behavior of the kernels. The SDE-BSE connect
observables with QCD’s fields and parameters, and feedback between theory and experiment can
then refine the statements and lead to an understanding of non-perturbative QCD and hadron
physics. The mass spectrum of hadrons, hadron elastic and transition form factors, distribution
functions, and the phase structure of hot and dense QCD, all contribute information that is
critical to elucidate the non-perturbative interaction between quarks and gluons. Existing and
future hadron physics laboratories around the world will be accumulating data so that for the first
time we will be able to see the transition from non-perturbative physics (mesons and baryons)
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to the perturbative domain (quarks and gluons), governed by QCD. Providing predictions that
can be tested experimentally is very important. An understanding of the emergent phenomena
of confinement and DCSB from first principles will surely provide us the foundations for an
understanding of hadron physics from QCD.

2. Electromagnetic structure of hadrons and pQCD predictions
The investigation of matter’s substructure through electron scattering experiments is a well-
proved technique since the electromagnetic (EM) probe is well known. Suppose that we want to
study the EM charge distribution of a hadron, for example the pion of Fig 1. The experimental
procedure is to measure the angular distribution of the scattered electrons and compare it to
the known cross section for scattering electrons from a point charge

dσ

dΩ
=

(
dσ

dΩ

)
point

∣∣F (q2)
∣∣2 , (1)

where q = k′− k = P ′−P is the momentum transfer carried by the virtual photon and F (q2) is
the hadron’s EM form factor (FF). We then attempt to deduce the structure (and dynamics of
its constituents) of the target from the measured FF. The amplitude for the Feynman diagram

γ q = k′ − k

π(P′)π(P)

e(k) e(k′)

Figure 1. Electron-pion scattering.
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Figure 2. Fπ(Q2) and pQCD prediction.

of Fig 1 is given by

M = (−ie)2u(k′)γµu(k)
−i

q2
〈π(P ′)|Jµ|π(P )〉, (2)

where u, u are electron spinors, |π(P )〉 is the full pion bound state, and Jµ its EM current.
The quantity 〈π(P ′)|Jµ|π(P )〉 is the pion-photon vertex, whose structure we do not know and
would like to understand in terms of the non-perturbative interactions between quarks, gluons,
and photons, from their underlying theories. Although we do not know the details about
〈π(P ′)|Jµ|π(P )〉 in terms of QCD and QED dynamics, we know that Jµ must be a Lorentz four-
vector, and therefore the EM interaction of a spinless particle, like the pion, can be parametrized
by a single FF

〈π(P ′)|Jµ|π(P )〉 = (P ′ + P )µFπ(Q2), (3)

where Fπ(Q2) is the pion FF that appears in Eq. (1) and we have defined Q2 ≡ −q2 since q2 is
negative for electron scattering. The FF parametrizes our ignorance about the detailed structure
of the pion and the dynamics of its substructure, represented by the blob in Fig 1. In principle, it
can be calculated from perturbative QCD (pQCD) for large Q2 because QCD is asymptotically
free. However, it is not clear whether presently accessible momentum transfers are large enough
to test predictions based on a perturbative analysis in QCD. For low-to-present-day momentum
transfers, the contributions coming from the dynamics of strong QCD play an important, if
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non-dominant, role. In this regime, pQCD is inapplicable and other methods that incorporate
these effects must be developed.

According to Brodsky and Lepage [8, 9], the large Q2 limit of lepton-hadron scattering
processes can be factorized into a soft part containing the non-perturbative longe-range
dynamics, absorbed into a universal distribution amplitude (DA), and a hard scattering
amplitude TH , which encodes the quark-gluon subprocesses and can be calculated in pQCD,
for the high-momentum exchange between the lepton and the valence quarks in the hadron.
Thus Fπ(Q2) can be written as [8, 9]

Fπ(Q2) =

∫∫
dxdyφ∗π(x,Q2)TH(x, y;Q2)φπ(y,Q2), (4)

where φπ(x,Q2) is the pion DA (PDA) and x (y) is the fraction of the pion momentum P (P ′)
carried by the individual valence quarks, 0 < x, y < 1. The hard scattering kernel is a sum over
contributions from one-gluon exchange, two-gluon exchange, and so on. Due to the asymptotic
freedom of QCD, in the Q2 →∞ limit Eq. (4) is dominated by one-gluon exchange [8, 9]. Thus

Fπ(Q2)
Q2→∞

= 16π
αs(Q

2)

Q2

∣∣∣∣13
∫

dx
1

x
φπ(x)

∣∣∣∣2 , (5)

where αs is QCD’s coupling constant, and xyQ2 is the “virtuality” of the exchanged gluon, which
sets the scale for αs(Q

2) and can be understood as a measure of the applicability of pQCD to
the interaction. In the Q2 →∞ limit the PDA evolves to [8, 9] φasyπ (x)

φπ(x,Q2)
Q2→∞−→ φasyπ (x) = 6fπx(1− x), (6)

where fπ = 92.2 MeV is the pion decay constant. Using Equations (5) and (6) one gets the
pQCD prediction [8, 9] for Fπ(Q2)

lim
Q2→∞

Q2Fπ(Q2) = 16πf2παs(Q
2). (7)

Brodsky and Lepage [8, 9] have also provided pQCD predictions for the transition FF Gπ0γγ∗(Q2)

that parametrizes the process γγ∗ → π0

lim
Q2→∞

Q2Gπ0γγ∗(Q2) = 4π2
1

3

∫
dx

1

x
φπ(x,Q2) = 4π2fπ, (8)

where we have used the asymptotic form of φπ(x,Q2). Note that in the both pQCD predictions
for Fπ(Q2) and Gπ0γγ∗(Q2), the quantity 1

3

∫
dx 1

xφπ(x,Q2), or the universal PDA φπ(x,Q2),
controls their normalization. The PDA plays an important role in the theoretical description
of many QCD processes [10]. Equations (7) and (8) are just two examples. The PDA also
plays a role in semileptonic weak decays B → πlν and weak hadronic decays B → ππ, both
of which contribute to the determination of the parameters of the quark mixing matrix in the
Standard Model; see, for example, Ref. [10]. The precise definition of φπ(x,Q2) is based on the
representation as the matrix element of a non-local quark-antiquark operator on the light-cone
formalism; its x-dependence cannot be computed from pQCD but its evolution with Q2 can.

The experimental measurement of Fπ(Q2) is a non-trivial task. To date, reliable experimental
data for Fπ(Q2) exist in the timelike (negative Q2) region, for small spacelike values of Q2, where
Fπ(Q2) is dominated by the ρ meson pole, and up to Q2 = 2.45 GeV2; see, for example, Ref. [11].
We are awaiting JLAB’s 12 GeV upgrade to extend the above measurements up to Q2 = 6 GeV2.
In Fig 2 the pQCD prediction for Fπ(Q2) is compared to the available experimental data. As can
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be seen, for the highest Q2 data available, there is a weak suggestion that Q2Fπ(Q2) = constant
is being approached. Since these data are several times larger than the pQCD prediction, non-
perturbative effects are still dominant. A question that comes to mind is: Has φπ(x,Q2) reached
its asymptotic value φasyπ (x) at present energies? For a comparison of the experimental data on
Gπ0γγ∗(Q2) to the pQCD prediction and recent SDE results, see Khépani Raya’s contribution
to these conference proceedings and also Ref. [12].

3. The Schwinger-Dyson equations
The Schwinger-Dyson equations are the equations of motion for the Greens functions of a
quantum field theory (QFT). These are derived from the full generating functional of the theory,
making no assumptions about the coupling constant. In the Euclidean space formulation of
QCD, the renormalized SDE for the full quark propagator, see Fig 3, for a particular quark
flavor is

S−1(p) = Z2iγ · p+ Z4m(µ) + Z1

∫
d4q

(2π)4
g2Dµν(p− q)λ

a

2
γµS(q)Γaν(p, q), (9)

where g is QCD’s coupling constant, Dµν is the gluon propagator, Γaν is the quark-gluon vertex,
and m(µ) the renormalized current-quark mass; Z1(µ,Λ) and Z2(µ,Λ) are renormalization
constants, which depend on the renormalization (µ) and regularization (Λ) mass scales. The
quark propagator, the gluon propagator, and the quark-gluon vertex, also depend on µ; however
observables do not. Both Dµν and Γaν satisfy their own SDE, which in turn are coupled to
higher n-point functions and so on ad infinitum. Thus the quark SDE, explicitly shows that the
SDEs form a coupled infinite set of non-linear integral equations. A tractable problem is defined
once a truncation scheme has been specified. See, for example, Refs. [5, 6, 7] for more details
on SDEs and their application to non-perturbative QCD and hadron physics. The general form

= +

−1

p p

−1

k

pq

Figure 3. Quark Schwinger-Dyson equation

q+

=
P P

p+

p− q−

p+

p−
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Figure 4. Meson Bethe-Salpeter equation

of the quark propagator is given in terms of two Lorentz-scalar dressing functions

S−1(p) = iγ · pA(p2, µ2) +B(p2, µ2) = Z−1(p2, µ2)
(
iγ · p+M(p2)

)
. (10)

In the last form, Z(p2, µ2) is known as the wave function renormalization and M(p2) is the quark
mass function. The solution of Eq. (9) is further subject to a renormalization condition [7]. The
best known truncation scheme of the SDEs is the weak coupling expansion. It is an essential
tool for the investigation of large momentum transfer phenomena because QCD is asymptotically
free. However, it excludes the possibility of obtaining information about the low-energy regime
of the strong interactions [5, 6, 7]. As an example of this, consider the chiral limit in pQCD. In
this case the theory is chirally symmetric and a perturbative evaluation [13, 14] gives

B(p2) = m[1− (α/π) ln(p2/m2) + · · · ], (11)

where the ellipsis denote higher order terms in α. However, it is always true that at any order
in pQCD limm→0B(p2) = 0 and hence DCSB is impossible in perturbation theory.
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4. The Bethe-Salpeter equation
Meson bound states, whose flavor structure is given by a dressed quark-antiquark pair, are
described by the Bethe-Salpeter equation (BSE), see Fig 4,

[ΓH(p;P )]tu =

∫
d4q

(2π)4
[K(p, q;P )]tu;rs

[
Sa(q+)ΓH(q;P )Sb(q−)

]
sr
, (12)

where H = (ab) indicates the flavor structure; ΓH(p;P ) is the meson Bethe-Salpeter amplitude
(BSA) describing the bound state; Sf (q±) is the quark propagator, obtained from Eq. (9);
K(p, q;P ) is the quark-antiquark scattering kernel; Latin indices indicate the color, flavor,
and Dirac structure; Poincaré covariance and momentum conservation entail q+ = q + ηP ,
q+ = q − (1 − η)P , etc, with P = p+ − p−. The parameter η ∈ [0, 1] describes the meson’s
momentum (P) sharing between the quark-antiquark pair; observables, however, do not depend
on this. The BSE is a homogeneous eigenvalue equation that admits solutions only for discrete
values of the meson momenta P 2 = −m2

H , where mH is the meson mass [5, 6, 7]. In a particular
channel, the lowest mass solution corresponds to the ground state. In the pseudoscalar channel
the lowest mass solutions are the pion and kaon mesons. The general form of the BSA in this
channel is given by

ΓH(p;P ) = γ5 [iEH(p;P ) + γ · PFH(p;P ) + γ · p(p · P )GH(p;P ) + σµνpµPνHH(p;P )] . (13)

Since the BSE is homogeneous, the BSA has to be normalized by a separate condition [5, 6, 7].
For a more detailed presentation of the SDE-BSE and their application to hadron physics see, for
example, Refs [5, 6, 7]. In Eq. (12), K(p, q;P ) is the fully-amputated, two-particle irreducible,
quark-antiquark scattering kernel. It is a four-point Schwinger function, obtained formally as
the sum of a countable infinity of skeleton diagrams. The complexity of K(p, q;P ) is one of the
reasons why quantitative SDE-BSE studies employ modeling of Dµν and Γaν , because K(p, q;P )
also appears in the SDE satisfied by Γaν . Despite their complexity, substantial progress has been
made in unraveling the non-perturbative structure of Dµν and Γaν using their SDE [15, 16], as
well as the lattice formulation of QCD [17, 18]. Ultimately, the detailed infrared behavior of
these quantities should not materially affect the observable consequences of the quark SDE and
meson BSE, as long as the infrared enhancement in the quark SDE implements the appropriate
amount of dynamical chiral symmetry breaking and, explains the (pseudo)Goldstone character
of the pion [5, 6, 7]. However, the lack of a full understanding of the interaction between quarks,
through the complete knowledge of K(p, q;P ), does not prevent us from obtaining general results
in hadron physics [19].

5. The rainbow-ladder truncation and the Maris-Tandy model
In QCD, chiral symmetry and its breaking pattern are the dominant effects in the low-energy
regime, specially for light quarks. These are expressed through the axial-vector Ward-Takahashi
identity (AxWTI) [19, 20, 21], which implies a relationship between the kernel in the BSE and
that in the quark SDE (through the quark self-energy Σ(k))∫

d4q

(2π)4
Ktu;rs(k, q;P ) [γ5S(q−) + S(q+)γ5]sr = [Σ(k+)γ5 + γ5Σ(k−)]tu , (14)

thus constraining the content of K(p, q;P ) if an essential symmetry and its breaking pattern
are to be preserved. This relation must be satisfied by any viable truncation scheme of the
SDE-BSE coupled system. In modeling the quark SDE kernel we follow [20, 21], and make use
of the rainbow approximation for the self-energy

Z1

∫
d4q

(2π)4
g2Dµν(k)

λa

2
γµS(q)Γaν(k, p)→

∫
d4q

(2π)4
G(k2)Dfreeµν(k)

λa

2
γµS(q)

λa

2
γν , (15)
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where the phenomenological “effective” coupling G(k2) contains information about the product
G(k2, µ2)F 1(k, p, µ), where F 1(k, p, µ) is the form factor associated with the γν structure in the
quark-gluon vertex and G(k2, µ2) that in the gluon propagator. From a practical point of view
Eq. (14) provides a way of obtaining K(p, q;P ). Equations (14) and (15) give

K(p, q;P )tu;rs = −G(k2)Dfreeµν(k)

[
λa

2
γµ

]
ts

[
λa

2
γν

]
ru

, (16)

which define the rainbow-ladder (RL) truncation of the SDE-BSE complex. Constraints on
G(k2) come from the SDE satisfied by gluon propagator and the quark-gluon vertex. However,
we know the behavior of α(k2) in the ultraviolet, k2 > 2-3 GeV2, is well described by pQCD, and
therefore any model dependence on G(k2) is restricted to the infrared. On the other hand, G(k2)
in the quark SDE should exhibit sufficient infrared enhancement capable of triggering DCSB
and the generation of a momentum-dependent quark mass dressing function that connects the
current-quark mass to a constituent-like quark mass [5, 6, 7]. Various models for the effective
interaction G(k2) combining the ultraviolet behavior known from pQCD and an ansatz for the
infrared part have been designed in the past and have been applied to different detailed studies
of hadron physics; see, for example, Refs. [5, 6, 7]. In choosing a form for G(k2) we use the
Maris-Tandy model [20, 21]. In Fig 5 we present numerical solutions for M(p2) for various
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Figure 5. M(p2) in the RL truncation with the
Maris-Tandy dressing function for various values
of m(µ).

values of m(µ). It is evident that DCSB occurs in the rainbow truncation. At ultraviolet
momenta, the magnitude of M(p2) is determined from m(µ). In the infrared, however, and
specially for light-quarks, M(p2) is significantly enhanced. For light quarks, this enhancement
is orders of magnitude larger than the mass present in the Lagrangian. The domain in which
the effect of DCSB is relevant decreases as the m(µ) increases. We also note that the evolution
from the current-quark mass to a constituent-like quark mass occurs at the scale of ≈ 1 GeV2,
as required from hadron phenomenology [22]. The behavior of M(p2) in Fig 5 has also been
confirmed semi-quantitatively in lattice simulations of QCD [23, 24, 25].

6. SDE-BSE results on the PDA and form factors
The theoretical interest in the distribution amplitude (DA) of hadrons is due to their relevance
in the description of exclusive reactions [8, 9, 26, 27] from QCD. The DAs describe probability
amplitudes to find a hadron in a state with minimum number of Fock constituents and at small
transverse separation. The scale dependence of the DA is given by the Efremov-Radyushkin–
Brodsky-Lepage (ERBL) evolution equations [8, 9, 26] and can be calculated in pQCD, while the
DA at a certain low scale provides the necessary non-perturbative input for the QCD treatment
of exclusive reactions. In terms of quark propagators S and the pion BSA Γπ, the pion DA is
given by [28]

fπφπ(x) = Z2NcTr

∫
d4q

(2π)4
δ(n · q+ − xn · P )γ5γ · nS(q+)Γπ(q;P )S(q−). (17)
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Due to the appearance of δ in Eq. (17) it is easier to calculate the integer moments of φπ(x),

〈xm〉 =
∫ 1
0 dxx

mφπ(x) [28]. For the computation of moments, using Feynman integral techniques
and a subsequent numerical integration over the Feynman parameters introduced, algebraic
parametrizations of the RL numerical solutions for S and Γπ are employed [28]. Once all needed
moments are calculated, a novel reconstruction procedure is implemented to obtain the PDA [28].
Here, the PDA is expanded in terms of Gegenbauer polynomials of order α, instead with α = 3/2
fixed. With α− = α− 1/2 we write

φπ(x, µ) = xα−(1− x)α− [1 +
∑

j=2,4,...

aαj (µ)Cαj (2x− 1)]. (18)

The parameter α and expansion coefficients aαj (µ) are determined from the numerical moments
obtained from Eq. (17). Once these are obtained one may project out the result onto an

α = 3/2 basis. However, this requires many nonzero coefficients {a3/2j }, and introduce spurious
oscillations typical of Fourier-like approximations. The plot in Fig 6 shows the RL result with
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the Maris-Tandy interaction [28]. It is described with αRL = 0.79, and aα
RL

2 = 0.0029. Projected

onto a α = 3/2 basis this corresponds to a
3/2
2 = 0.23, . . . , a

3/2
14 = 0.022, etc; see Ref. [28] for more

details on the computation and the conclusions drawn. Recall the quantity
∣∣1
3

∫
dx 1

xφπ(x)
∣∣2.

The Gegenbauer expansion coefficients evolve with scale according to ERBL equations [8, 9, 26].

At leading-log accuracy it is necessary to evolve to µ = 100 GeV before a
3/2
2 falls to 50 %

of its value [29]. This means that the asymptotic value φasyπ (x) lies at very large momenta.

Furthermore using the asymptotic form for φπ(x) we have
∣∣1
3

∫
dx 1

xφ
asy
π (x)

∣∣2 = 1. On the other

hand, using the RL result for φπ(x) we have
∣∣1
3

∫
dx 1

xφ
RL
π (x)

∣∣2 = 3.2. This means that the
pQCD analysis result has to be multiplied by a factor of 3.2 and the asymptotic analysis of
various models has to be compared to this new result [29], since the asymptotic domain given
by pQCD lies indeed at very large momenta, far beyond our experimental capabilities; see curve
E in Fig 7. Curve A in Fig 7 shows the Fπ(Q2) computed in the RL truncation of the SDE-
BSE system [29]. The magnitude of Q2Fπ(Q2) reflects the scale of dynamical chiral symmetry
breaking. The analysis in Ref. [29] in shows that hard contributions to the pion form factor
dominate for Q2 ≥ 8 GeV.
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7. Conclusions
The SDE-BSE is a well founded continuum approach to non-perturbative QCD and hadron
physics. They are a natural framework for the exploration of strong QCD since they provide
access to infrared as well as ultraviolet momenta, thus giving a clear connection with processes
that are well understood because QCD is asymptotically free.
φasyπ is a poor approximation to φπ(x) at all momentum-transfer scales that are either now

accessible to experiments involving pion elastic or transition form processes, or will become
so in the foreseeable future. Predictions for leading-order, leading-twist formulae involving
φasyπ are a misleading guide to interpreting and understanding contemporary experiments. At
accessible energy scales a better guide is obtained by using the PDA described herein in such
formulae [12, 28, 29, 30].
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