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Abstract. In this review, we present a new method for computing physical cross sections at
NLO accuracy in QCD without using the standard Dimensional Regularisation. The algorithm
is based on the Loop-Tree Duality theorem, which allow us to obtain loop integrals as a sum
of phase-space integrals; in this way, transforming loop integrals into phase-space integrals, we
propose a method to merge virtual and real contributions in order to find observables at NLO
in d = 4 space-time dimensions. In addition, the strategy described is used for computing the
γ∗ → qq̄(g) process. A more detailed discussion related on this topic can be found in Ref [1].

1. Introduction
Theoretical tools for describing physical observables at the LHC require to be very precise for
the determination of the properties of new particles and the description of new physics processes.
In general, the formalism used to obtain accurate theoretical predictions is based in the so-called
Dimesional Regularisation [2] (DREG). In DREG, real and virtual integrals are implemented in
d = 4−2ε instead of d = 4 space-time dimensions and singularities are manifested as poles in the
ε parameter. However, cancellation of singularities on infrared-safe observables is guaranteed by
the KLN [3] theorem. These ideas have been studied in terms of the substraction techniques [4]
and the developments along them have had an enormous impact on the theoretical predictions
for the LHC. In this document, we will describe a new method based on the Loop-Tree Duality
(LTD) theorem [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; we will present the general algorithm
for the mapping between real and virtual variables so the cancelation of singularities is achieved
at integrand level, meaning that integrals can be done in d = 4 dimensions; finally, we will
present a realisation of the method in the γ∗ → qq̄(g) process at NLO in QCD.

2. The Loop-Tree duality
LTD presents a new paradigm for writing loop integrals, at one-loop and beyond, as a sum of
phase-space integrals, the so-called dual integrals. In order to illustrate the theorem at one-loop,
let’s consider a generic N -particle scalar one-loop integral with massive particles, i.e.

L(1)(p1, . . . , pN ) =

∫
`

N∏
i=1

GF (qi) , (1)
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where GF (qi) = (q2i −m2
i + ı0)−1. Then, the dual representation consists of the sum of N dual

integrals:

L(1)(p1, . . . , pN ) = −
N∑
i=1

∫
`
δ̃ (qi)

N∏
j=1, j 6=i

GD(qi; qj) , (2)

where GD(qi; qj) = (q2j −m2
j − ı0 η · kji)−1 are dual propagators, i, j label the available internal

lines and δ̃(qi) ≡ 2πı θ(qi,0) δ(q
2
i −m2

i ). Masses and momenta of the internal lines are denoted
mi and qi,µ = (qi,0,qi), respectively, where qi,0 is the energy and qi are the spatial components.
Internal lines can be written in terms of the loop momentum ` and the outgoing four-momenta
of the external particles pi, as qi = ` + ki, ki = p1 + . . . + pi, where momentum conservation
holds, i.e. kN = 0. Finally, Eq. (2) shows explicitly a relation between a one-loop integral with
N external legs to N phase-space integrals, where the change in sign in the ı0 prescription has to
be considered carefully. This procedure can also be used for topologies with more than one-loop
and it has been studied previously [7].

3. Unsubtraction in d = 4
The general procedure for describing next-to-leading order (NLO) cross sections involves the
calculation of real and virtual corrections to the Born cross-section. Let’s consider a process
with m particles in the final state; the NLO cross-section is written as

σNLO =

∫
m
dσ

(1,R)
V +

∫
m+1

dσ
(1)
R , (3)

where dσ
(1)
R denotes the real correction and dσ

(1,R)
V contains all the information related to the

renormalised virtual correction; indeed, using the LTD, virtual correction can be written as

dσ
(1,R)
V =

N∑
i=1

∫
`
2 Re〈M(0)

N |M
(1,R)
N (δ̃(qi))〉ON ({pi}) , (4)

whereM(0)
N represents the leading order (LO) amplitude with N -legs,M(1,R)

N is the renormalised
one-loop scattering amplitude, and ON ({pi}) is a measure function which is defined for a given

observable. It is worth mentioning that M(1,R)
N also contains the self-energy contributions of

external legs, even if they become zero in the massless case. Besides, the renormalised amplitude
includes counter-terms which are needed in order to subtract UV singularities locally, this aspect
is widely discussed in Ref. [1]. On the other hand, the real correction is given by∫

m+1
dσ

(1)
R =

N∑
i=1

∫
m+1
|M(0)

N+1(qi, pi)|
2Ri(qi, pi)ON+1({p′j}) , (5)

where the external momenta p′j , the phase-space and the tree-level scattering amplitude,M(0)
N+1,

are rewritten in terms of the loop three-momentum and the external momenta pi of the Born
process.

One of the basic ideas in order to build a four dimensional representation of the scattering
amplitudes resides on a proper mapping between real and virtual variables in order to merge
both contributions at integrand level. Following these ideas, let’s consider the first parton as the
emitter and the second as the spectator; then, in order to reconstruct the kinematics associated
to the real emission, we propose to map the loop three-momentum and the four momenta of the
emitter and the spectator into a region of the real phase-space where the twin of the emitter
decays to two partons in a soft and collinear configuration; it means,

p′µr = qµi , p′µi = pµi − q
µ
i + αi p

µ
j , p′µj = (1− αi) pµj , p′µk = pµk , k 6= i, j , (6)
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where αi = (qi−pi)2/(2pj ·(qi−pi)), pi is the momenta of the final-state emitter, qi is the internal
on-shell momentum prior to the emitter, pj is the momentum of the final-state spectator, and p′r
is the momentum of the extra radiated particle. In addition, it is straightforward to show that
momentum conservation is satisfied in the mapping. A final piece in the method consists on the
segmentation of the real phase-space. In Eq. (5), we have introduced a complete partition of
the real phase-space ∑

Ri(pi, qi) =
∑ ∏

jk 6=ir
θ(y′jk − y′ir) = 1 , (7)

which is similar to divide the phase-space as a function of the minimal dimensionless two-body
invariants y′ir = s′ir/s. This separation of the real phase-space takes into account the relation
between the real and virtual kinematics, such that, the real correction is actually contributing
over the region where the soft and collinear divergences are generated. Hence, IR singularities are
cancelled at the integrand level when both real and virtual corrections are simultaneously added.
On the other hand, the UV divergences are subtracted locally by suitable counter-terms [1].
Finally, the implementation of the NLO cross-section can be implemented in four-dimensions
due to the absence of divergences at integrand level, i.e. ε = 0 in DREG.

4. Unsubtraction applied to γ∗ → qq̄(g) at NLO in QCD
In this section we present an example where the method can be tested. NLO correction to
the process γ∗ → qq̄(g) includes, for the virtual correction, the self-energy and the triangle
topologies, the most simple topologies where the LTD can be applied. Considering that
internal loop momenta are q1 = ` + p1, q2 = ` + p12 and q3 = `, we parametrise them as
2qµi =

√
s12ξi,0(1, 2

√
vi(1− vi)ei,⊥, 1 − 2vi) when q2i = 0. Then, proceeding with the method

described in the previous section, we obtain by combining real and virtual correction the dual
cross-sections

σ̃
(1)
1 = σ(0)

αS

π
CF

∫ 1

0
dξ1,0

∫ 1/2

0
dv1R1(ξ1,0, v1)

[
2
(
ξ1,0 − (1− v1)−1

)
− ξ1,0(1− ξ1,0)

(1− (1− v1)ξ1,0)2

]
,

σ̃
(1)
2 = σ(0)

αS

2π
CF

∫ 1

0
dξ2,0

∫ 1

0
dv2R2(ξ2,0, v2) (1− v2)−1

[
2 v2 ξ2,0 (ξ2,0(1− v2)− 1)

1− ξ2,0

−1 + v2 ξ2,0 +
1

1− v2 ξ2,0

(
(1− ξ2,0)2

(1− v2 ξ2,0)2
+ ξ22,0

)]
, (8)

where the segmentation of the real phase-space is defined as

R1(ξ1,0, v1) = θ(1− 2v1) θ

(
1− 2v1
1− v1

− ξ1,0
)
, R2(ξ2,0, v2) = θ

(
1

1 +
√

1− v2
− ξ2,0

)
; (9)

and the remnant dual pieces are collected in a single element leading to

σ
(1)
V = σ(0)

αS

4π
CF

∫ ∞
0

dξ

∫ 1

0
dv

{
− 2 (1−R1(ξ, v)) v−1(1− v)−1

ξ2(1− 2v)2 + 1√
(1 + ξ)2 − 4v ξ

+ 2 (1−R2(ξ, v)) (1− v)−1
[
2 v ξ (ξ(1− v)− 1)

(
1

1− ξ + ı0
+ ıπδ(1− ξ)

)
− 1 + v ξ

]
+ 2 v−1

(
ξ(1− v)(ξ(1− 2v)− 1)

1 + ξ
+ 1

)
− (1− 2v) ξ3 (12− 7m2

UV − 4ξ2)

(ξ2 +m2
UV)5/2

− 2 ξ2(m2
UV + 4ξ2(1− 6v(1− v)))

(ξ2 +m2
UV)5/2

}
. (10)
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In Eq. (10) we have unified the integration variables, ξ = ξ2,0 = ξ3,0 = ξUV and v = v2 = v3 =
vUV, while (ξ1,0, v1) are expressed in terms of (ξ2,0, v2) with the appropriate change of variables.
The last two termns in Eq. (10) are the UV counter-terms of the vertex and self-energies. Finally,
integrating these expressions, we obtain the well known result

σ = σ(0)
(

1 + 3CF
αS

4π
+O(α2

S)

)
, (11)

where σ(0) = α e2q CA/2. It is worth mentioning that using the method described in here, it
was unnecessary to introduce any tensor reduction; Gram determinants are naturally avoided
in LTD, and therefore the spurious singularities that the tensor reduction introduces leading to
numerical instabilities in the integration over the phase-space.

5. Conclusions
In this review, we illustrated a new method for computing NLO cross sections with the
application of the LTD theorem and without using DREG. The general algorithm is described
and a practical realisation is implemented in the calculation of the γ∗ → qq̄(g) at NLO in QCD.
The advantage on the use of the LTD is that the calculation of a full NLO correction is achieved
with purely four-dimensional expressions, i.e. with the DREG parameter ε = 0.
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