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Abstract. The CP-even static form factors ∆κ′
V and ∆QV (V = γ, Z) associated with

the WWV vertex are studied in the context of the Georgi-Machacek model (GMM), which
predicts nine new scalar bosons accommodated in a singlet, a triplet and a fiveplet. General
expressions for the one-loop contributions to ∆κ′

V and ∆QV arising from neutral, singly and
doubly charged scalar bosons are obtained in terms of both parametric integrals and Passarino-
Veltman scalar functions, which can be numerically evaluated. It is found that the GMM yields
15 (28) distinct contributions to ∆κ′

γ and ∆Qγ (∆κ′
Z and ∆QZ), though several of them are

naturally suppressed.

1. Introduction
Models with scalar triplet representations have attracted considerable attention due to their
appealing features, such as the possibility of implementing the see-saw mechanism to endow the
neutrinos with naturally light Majorana masses (the so called type-II see-saw), the appearance
of the H±W∓Z coupling at the tree level, and the presence of doubly charged scalar particles.
In this respect, the Georgi-Machacek model (GMM) [1, 2] is one of the most attractive Higgs
triplet models as it preserves the relationship ρ = 1 at the tree level via an SU(2) custodial
symmetry. The physical scalar spectrum of the GMM is given by the SM-like Higgs boson h and
one extra CP-even singlet H, one scalar triplet H3 (H0

3 , H±3 ), and one scalar fiveplet H5 (H0
5 ,

H±±5 , H±5 ). All of these multiplets are mass degenerate as a result of the custodial symmetry.
Even if there is not enough energy available to produce the new scalar particles predicted by
the GMM, one can search for their virtual effects through some observables. Particular interest
has been put on the radiative corrections to the WWV (V = γ, Z) vertex, which represents a
very sensitive scenario to search for any NP effects and test the gauge sector of the SM.

The on-shell WWV vertex can be written in terms of four form factors that define the CP-
even and CP-odd static properties of the W boson. The two CP-odd form factors ∆κ̃′V and

∆Q̃V are absent up to the one-loop level in the SM and are thus expected to be negligibly small.
As far as the CP-even form factors ∆κ′V and ∆QV are concerned, they arise at the one-loop level
in the SM and any other renormalizable theory, thereby being highly sensitive to NP effects.

The vertex function that determines the WWV CP-conserving coupling can be written as

ΓµαβV = igV

{
A
[
2pµgαβ + 4

(
Qβgµα −Qαgµβ

)]
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Figure 1. The WWV vertex function. The circle denotes radiative contributions.

+2∆κ′V

(
Qβgµα −Qαgµβ

)
+

4∆QV
m2
W

(
pµQαQβ − 1

2
m2
V p

µgαβ
)}

, (1)

where gV stand for the WWV tree-level coupling constant (in the SM gγ = gsW and gZ = gcW )
and we have used the convention employed in [3] for the external momenta, as shown in Fig. 1.

2. ∆κ′V and ∆QV form factors in the GMM
The new scalar one-loop contributions from the GMM to the ∆κ′V and ∆QV form factors arise
from generic triangle diagrams (the bubble diagrams do not contribute) that can be classified
according to the number of distinct particles circulating into the loop. Each type of diagram
involves trilinear vertices between gauge bosons only or between scalar bosons and gauge bosons.
In Fig. 2 we show a set of Feynman diagrams that contribute to both the WWγ and WWZ
vertices.
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Figure 2. Generic Feynman diagrams for the new scalars contributions to both the WWγ and WWZ

vertices involving only two distinct virtual particles. The arrows stand for the directions of the 4-momenta.

The possible combinations of internal particles are given by the vertices allowed in each particular model.

For instance, when V = γ, the following electric charges of the internal particles are possible in the GMM,

in units of the positron charge: if QA = −1 then QB = 0, if QA = 1 then QB = −2, if QA = −2 then

QB = 1.

Contrary to the couplings of the photon to a pair of charged scalar bosons, which can only
be of diagonal type due to electromagnetic gauge invariance, the Z boson can have nondiagonal
couplings to a pair of neutral or charged scalar bosons. Therefore, in addition to the diagrams
of Fig. 2, the ∆κ′Z and ∆QZ form factors can receive extra contributions from the Feynman
diagrams shown in Fig. 3, which have three distinct particles circulating into the loop. Below we
will present the contributions to the ∆κ′V and ∆QV form factors for all these type of diagrams.

Before presenting our results, some remarks about our calculation are in order:

• The Feynman diagrams were evaluated via the unitary gauge. In order to make a cross check
of our results we used both, the Feynman parametrization technique and the Passarino-
Veltman method to solve the loop integrals.
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Figure 3. Extra contributions to the ∆κ′Z and ∆QZ form factors from nondiagonal couplings.

• We verified that all the contributions of bubble diagrams to the ∆κ′V and ∆QV form factors
involving quartic vertices with two scalar bosons and two gauge bosons vanish, and thus
the only contributions arise from triangle diagrams.

• The mass shell and transversality conditions for the gauge bosons enabled us to make the
following replacements

Q2 =
m2
V

4
, p ·Q = 0, p2 = m2

W −
m2
V

4
, (2)

and
pα → Qα, pβ → −Qβ, pµ → 0, (3)

which results in a considerable simplification of the calculation.

• Instead of dealing with the calculation of the WWγ and WWZ vertices separately, we
performed instead the calculation of the general WWV vertex, with V a massive neutral
gauge boson. We have exploited the fact that there are only three generic trilinear vertices
involved in the one-loop contributions to the WWV vertex and thus a model independent
calculation was done using the generic Feynman rules of Fig. 4. The result for the
contribution of each type of Feynman diagram will be presented in terms of loop functions,
given as parametric integrals and also in terms of Passarino-Veltman scalar integrals, times a
factor involving all the generic coupling constants associated with each vertex participating
in the particular diagram. The contribution to the form factors of the WWγ and WWZ
vertices follow easily from our general expressions after taking the appropriate mass limits
and substituting the corresponding coupling constants of the GMM or any other extension
model.

• We corroborated all the contributions to the ∆κ′V and ∆QV form factors are free of
ultraviolet divergences.

Once the amplitude for each Feynman diagram is written down, the Feynman parametrization
technique and the Passarino-Veltman method can be applied straightforwardly, along with some
cumbersome algebra. Thereafter one can express the contributions to the ∆κ′V and ∆QV form
factors for each type of Feynman diagram of Fig. 2 as follows

∆κ′iV = − CiV
16π2

IV−iκ (xA, xB, xV ), (4)
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Figure 4. Generic Feynman rules for the relevant vertices involved in our calculation. The arrows

stand for the direction of the 4-momenta and Γµαβ = gµα(p1 − p3)β + gαβ(p2 − p1)µ + gβµ(p3 − p2)α.

V = γ, Z, φI (I = A, B, C) denote a neutral singly, or doubly charged scalar boson, and XJ (J = A, B)

stands for a neutral or charged gauge boson.

∆QiV = − CiV
16π2

IV−iQ (xA, xB, xV ), (5)

for V = Z, γ and i = a, b, c. We have introduced the scaled variable xI = m2
I/m

2
W (I = A, B),

with mA and mB denoting the masses of the particles circulating into each type of diagram. A
word of caution is in order here as mA and mB, and thereby xA and xB, are distinct for each
type of contribution, which in turn is denoted by the superscript i (i = a, b, c). As for the
loop functions IV−iκ and IV−iQ , they are in terms of parametric integrals and Passarino-Veltman

scalar integrals and can be found in [5], while the CiV factors are given in term of the coupling
constants of the vertices involved in each Feynman diagram.

As explained above, the ∆κ′iγ and ∆Qiγ form factors can be obtained from the general
expressions (4) -(5) by taking the mV → 0 limit. We have verified that these expressions
are in agreement with the results presented in Ref. [4], where the WWγ vertex was studied in
the context of little Higgs models.

As far as the Feynman diagrams of Fig. 3 are concerned, they only contribute to the WWZ
vertex and the respective form factors depend now on three distinct internal masses. They can
be written as follows

∆κ′iZ = − CiZ
16π2

IZ−iκ (xA, xB, xC , xZ), (6)

∆QiZ = − CiZ
16π2

IZ−iQ (xA, xB, xC , xZ). (7)

This time the superscript i = d, e, f stands for the whole contributions of diagrams i1 and i2,
and again the loop functions IZ−iκ and IZ−iQ can be found in [5].

Once the general expressions for the different kinds of contributions are obtained, we can
compute the total contribution of the scalar sector of a given model by simple adding up all
the partial contributions. We will present below a numerical analysis of the contributions of the
GMM. For the numerical evaluation we computed the parametric integrals via the Mathematica
numerical routines. A cross check was done using the results obtained by evaluating the results
given in terms of Passarino-Veltman scalar functions with the help of the LoopTools routines.

2.1. ∆κ′γ and ∆Qγ form factors
Excluding the pure SM contributions, in the GMM, the ∆κ′γ and ∆Qγ form factors receive
10 contributions of the type-(a) diagrams, 3 of the type-(b) diagrams, and 2 of the type-(c)
diagrams. Notice that all the new scalar bosons participate in the type-(a) diagrams, whereas
the type-(b) diagrams only receive contributions from the singlet and the fiveplet scalar bosons,
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and the type-(c) diagrams from the fiveplet scalar bosons only. We examine the general behavior
of ∆κ′γ and ∆Qγ as functions of the masses of the scalar bosons. For the type-(b) and type-(c)
contributions we show in Fig. 5 the form factors as a function of the mass of the scalar boson
circulating into the loop, whereas for type-(a) diagram we consider two scenarios: when both
scalar bosons are degenerate and when one scalar boson mass is fixed and the other one is
variable.

Figure 5. Behavior of the ∆κ′γ and ∆Qγ form factors as functions of the masses of the scalar

bosons circulating into the loops of each type of contribution divided by the Ciγ coefficient and in units of

a = g2/(96π2). While type-(a) contribution depends on two scalar boson masses mS1
and mS2

, type-(b)

and type-(c) diagrams depends on only one scalar boson mass mS1 .

2.2. ∆κ′Z and ∆QZ form factors.
We will now analyze the ∆κ′Z and ∆QZ form factors, for which we will follow a similar approach
to that used above. We thus start by studying the general behavior of the distinct types of
contributions. Apart from the diagrams of Fig. 2, there is additional contributions due to
the diagrams of Fig. 3. As for the contributions of type (a), (b) and (c), their behavior is
quite similar to that observed in Fig. 5, so here we will thus focus on the analysis of the extra
contributions, whose behavior will turn out to be rather similar to that of contributions type (a),
(b) and (c). There are 7 contributions of type (d), 4 of type (e), and 3 of type (f) to the ∆κ′Z and
∆QZ form factors. Although our general results allow us to calculate type-(d) contributions with
three distinct scalar boson masses mS1 , mS2 and mS3 , in the GMM all the masses of the same
multiplet are degenerate. It means that type-(d) contributions arise only from diagrams with
al least two degenerate scalar bosons. Also, although type-(e) contribution arise from diagrams
that can have two distinct scalar bosons, their masses are degenerate and there is dependence
on one mass only, and this is also true for type-(f) contributions. Therefore, we expect that
type-(d) contributions will be dominant as long as there is a large mass splitting between the
scalar boson masses, whereas type-(e) and type-(f) contributions will only be important for a
relatively light scalar boson mass. This is depicted in Fig. 6, where we show the behavior of the
∆κ′Z and ∆QZ form factors for all the scenarios allowed in the GMM. For type-(d) contributions
we consider three scenarios: mS3 fixed and mS2 = mS1 variables, mS3 = mS2 fixed and mS1

variable, and the three scalar boson masses degenerate mS3 = mS2 = mS1 . On the other hand,
for type-(e) contributions we only consider the case when the two scalar bosons are degenerate.
In Fig. 6 we observe that ∆κZ and ∆QZ have a similar behavior to that of the ∆κ′γ and ∆Qγ
form factors. In particular, the largest contributions to ∆κ′γ are reached when there is a large
mass splitting or when all the scalar bosons masses circulating into each loop are relatively light.
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However, the decrease of ∆κ′Z for large mS1 is now less quick than in the case of ∆κ′γ . Again,

the CiZ factor is proportional to v, so the values shown in the plots for type-(e) and type-(f)
contributions will increase by two orders of magnitude. As for ∆QZ , it will reach its large value
for the smallest allowed scalar boson masses as in the case of ∆Qγ . When the scalar bosons are
very heavy, they will be approximately degenerate, in which case ∆QZ will decrease significantly.
Extra suppression for both form factors can arise from the CiZ coefficients and from potential
cancellations between the distinct contributions.

Figure 6. Behavior of the ∆κ′Z and ∆QZ form factors as a function of the masses of the scalar bosons

circulating into the loops of each type of contribution divided by the Ciγ coefficient. We only consider

the possible scenarios arising in the GMM.

3. Conclusions
A model independent calculation was done via both the Feynman parameter technique and the
Passarino-Veltman reduction scheme. Our general results are expressed in terms of a six generic
contributions to ∆κ′V and ∆QV from scalar bosons that can be used to calculate the corrections
arising from models with an extended scalar sector predicting new neutral, singly, and doubly
charged scalar bosons. For the numerical analysis we have focused on the GMM, this model
predicts 9 new scalar bosons accommodated in a singlet, a triplet and a fiveplet, which yield 15
new contributions to ∆κ′γ and ∆Qγ , whereas ∆κ′Z and ∆QZ receive 28 distinct contributions.
The general behavior of the ∆κ′V and ∆QV form factors was analyzed and it was found that
∆κ′V reaches values of the order of a = g2/(96π2), with the largest values arising from the
diagrams with two nondegenerate scalar bosons provided that there is a large splitting between
their masses. On the other hand ∆QV reaches values of the order of 10−2a, with the largest
contributions arising from diagrams with relatively light degenerate scalar bosons. Both form
factors decrease rapidly when all the scalar boson masses are heavy. The values for ∆κ′V and
∆QV predicted by the GMM are competitive with the ones predicted by other weakly coupled
SM extensions, but a very high precision still would be necessary to detect such effects.
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