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Abstract. One of the principal tasks for the design of the Mexican synchrotron was to define
the storage ring energy. The main criteria for choosing the energy come from studying the
electromagnetic spectrum that can be obtained from the synchrotron, because the energy range
of the spectrum that can be obtained will determine the applications available to the users of
the future light source. Since there is a public demand of hard X-rays for the experiments in
the synchrotron community users from Mexico, in this work we studied the emission spectra
from some hard X-ray sources which could be the best options for the parameters of the
present Mexican synchrotron design. The calculations of the flux and the brightness for one
Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting
Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period
Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent
Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were
used for the computation (XOP and SRW). From the results, it can be concluded that the
particle beam energy from the current design is enough to have one or more sources of hard
X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources,
and the choice of each type should be based on the specific characteristics of the X-ray beam
to perform the experiments at the involved beamline. This work was done within the project
Fomix Conacyt-Morelos ”Plan Estratégico para la construccién y operacién de un Sincrotrén
en Morelos” (224392).

1. Introduction

A typical storage ring light source consists of a source, an injector, transport lines between
accelerators, a storage ring, and a collection of surrounding beamlines with their experimental
stations. A basic storage ring scheme with some synchrotron radiation sources is shown in the
Figure 1.

In the present, there are three main groups of synchrotron sources based on storage rings.
These are classified by the electron beam energy, low energy storage rings (<2 GeV) for VUV and
soft X-rays radiation, high energy (6-8 GeV) for hard X-rays radiation, and the intermediate-
energy light sources (2.5 GeV to 3.5 GeV); the Mexican project has been planned to be an
intermediate-energy light source (ILS). Besides the good profitability of the ILS [2], there are
other reasons for the popularization of the ILS around the world. This popularity is largely
based on the high performance of these machines, backed up by recent technology developments
like better systems to control instabilities at high beam current, higher harmonic RF-cavities
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Figure 1. Basic components of
a storage ring light source. The
injection system is not shown [1].

to extend beam life time, between others [3]. One of the most important technological im-
provements was the development of insertion devices (IDs) to generate plentiful hard X-rays at
relatively low electron beam energy [1]. This progress allows ILS to deliver hard X-rays (5-50
keV) [3].

There are many synchrotron radiation sources (bending magnets and IDs) that can provide
hard X-rays in an ILS facility. The main target of this work is to study these sources under the
electron beam parameters of the Mexican synchrotron design.

2. Hard X-ray sources for ILS
The radiation from bending magnet (BM) and wiggler sources is a continuum spectrum with a
critical photon energy &,

e.(keV) = 0.665B(T)E?(GeV), (1)

where E is the electron beam energy and B is the magnetic field of the bending or wiggler
magnet. The high magnetic field of the wiggler can extend the radiation to higher photon
energy compared to a dipole. The radiation spectrum from an undulator magnet consists of a
series of discrete harmonic peaks with the photon energy of €, [5],

0.95nE2%[GeV] @)
Aulem](1 + K2/2)°
where \,, is the undulator period (Figure 2), n is the radiation harmonics, and K = eBA, /27 mc

is the undulator magnetic strength parameter, where 3 is the relative speed of the electron with
respect to the light.
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Two important figures of merit for synchrotron radiation are the spectral photon flux F,
defined as the photons emitted by electron beam per second and in 0.1% bandwidth, and the
spectral brightness B, defined as the photon flux per unit source area and per unit solid angle
of the radiation cone [4],

Npn

F= 0.1%Aw/w’ 3)
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(4)

where N, is the number of photons per second and o7,07, 07y 07, are the effective photon
beam sizes and divergences in transverse planes.

It can be noticed from the equations (1) and (2) that in order to obtain higher X-ray
energies, it is necessary to increase either the electron beam energy (F), the magnetic field
(B) or, to decrease the A, in the case of an Undulator. Since the cost of a synchrotron facility
notably increases at higher electron beam energies, in the present there exists a good variety of
technologies aimed to have IDs and BMs with stronger magnetics fields and shorter undulator
periods as hard X-ray sources. The devices that could have good potential (as hard X-rays
sources) for the Mexican light source project are

(i) High field bending magnets or Super-Bending Magnets (SBMs).
(ii) SuperConducting Wigglers (SCWs).
(iii) In Vacuum Short Period Undulators (IV-SPUs).
(iv) Superconducting Undulators (SCUs).
(v) Cryogenic Permanent Magnets Undulators (CPMUs).

2.1. High field bending magnets or Super-Bending Magnets (SBMs)

Some light sources around the world are using, or planning to use, SBMs, these SBMs can
produce high magnetic fields based on super-conducting materials. For instance, there is a
proposal in the SIRIUS (Brazil) designed to use SBMs of 2 T to generate hard X-rays [6].
Another case is in the SSRF (China) where the researchers are planning an upgrade of the
sources by replacing normal BMs by SBMs [7]. Since there is a intrinsic spreading in a cone
of the radiation from a magnetic dipole, this kind of sources can be used in experiments where
hard X-rays are required but not needed with high brightness.

2.2. Super-Conducting Wigglers (SCWs)

There are many ILS using SCWs to generate hard X-rays, some of them are shown in the table
1. It is worth to mention that this SCWs were built in the Budker Nucler Physics Institute,
Novosibirsk, Russia [8].

Table 1. Examples of SCWs installed at some ILS: the Canadian Light Source (CLS), the
English Source (DLS), the Italian (Elettra) and the Spanish synchrotron (ALBA). Here E. is
the electron beam energy and FE), is the photon energy.

Synchrotron | E. (GeV) | Beamline | E, (keV)
CLS 2.9 BMIT 20-100
DLS 3 112 50-150

Elettra 2.4 XRD2 8-30
ALBA 3 BL04 MSPD 8-50

Due to its low operating temperature (4 K), the manufacturing and operation of the SCWs
are significantly higher than those based on permanent magnets. For these reasons, there are
many efforts to build a Wiggler with high magnetic fields using permanent magnets only [9].
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2.8. In-Vacuum Short Period Undulators (IV-SPUs)

The Undulators (hybrids or pure structure) are the workhorses of every third generation
synchrotron facility. However most of them have long undulator period and big magnetic gaps,
making impossible to generate high brightness hard X-rays for an ILS. To reduce the magnetic
gap of these devices, the magnetic structure can be placed inside the vacuum chamber (In-
vacuum Undulators). Therefore, in principle, the magnetic gap is limited only by the electron
beam acceptance. Additionally, if the Undulator period is short, this ID can be an improvement
of the hard X-rays brightness in a ILS [10]. There is an excellent explanation of the advantages
and disadvantages of the use of IV-SPUs in the work by Hwang et al [10].

2.4. SuperConducting Undulators (SCUs)

The use of Undulators as hard X-rays sources carries some costs, first, reducing A, reduces
K proportionally, resulting in fewer emitted photons with high energy. Both electromagnet
and permanent-magnet based Undulators are material limited in their maximum magnetic field
strength B, so there is no obvious way to compensate for this reduction in K. There are also
some practical challenges. To maintain sufficient magnetic field strengths, the undulators air
gap (between top and bottom magnet arrays) must also be scaled down proportionally. This
narrowed gap demands strict beam alignment and low beam emittance in order to pass the
electrons through the structure without beam scraping [11]. These difficulties can be avoided
by the use of superconducting materials to get high magnetic fields. Since 1990 many proposals
appeared, about the replacement of permanent magnets by superconducting wires or coils [12]
y [13]. There is a complete study about NbTi and NbsSn SCUs made by J. Bahrdt and Y.
Ivanyushenkov [14], in this work they concluded that the SCU technology permits an excellent
spectral performance, and the SCUs will become the preferred devices as soon as operational
issues have been demonstrated in a multi-user facility.

2.5. Cryogenics Permanent Magnets Undulators (CPMUs)

Another option is to use short period Undulators based on permanent magnets, for short
Undulator periods (A <9 mm) the CPMUs can reach the same magnetic field intensity than
the SCUs [14]. Since the operation temperature of the CPMUs is around the liquid nitrogen
temperature, the operation costs and the heating problems are fewer than with the SCUs.
Another advantage of the CPMUs over the SCUs is that the field correction techniques developed
for conventional permanent magnet Undulators can be directly applied to the CMPUs [15].
Currently, there are many CPMUs devices under development at some light sources in the
world, for example the ones at SOLEIL [16] and the ESRF [17]. There are promising results
and it seems like the CPMUs will dominate the short period undulator technology for the next
years [14], for storage rings [18] and for free electron lasers (FELs) [19].

3. Spectra calculations from the sources
The parameters of the storage ring design are shown in the table 2.

Using the codes XOP (X-ray Oriented Programs, see 2.3) [20] and SRW (Synchrotron
Radiation Workshop, see 3.92) [21] the flux and brightness from some sources are shown in
the figures 3 and 4, respectively.

4. Conclusions

The study of different hard X-ray sources for the Mexican synchrotron project has been done.
From the calculated spectra it can be concluded that the parameters of the present storage ring
design are enough to have one or more hard X-rays sources for the users. The hard X-rays region
can be covered from the studied sources, each of these has some advantages and disadvantages
and the election will depend on the specifications needed from the corresponding beamline.
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Table 2. Electron beam parameters of the Mexican source project, corresponding to the straight
sections of the storage ring.

Beam Energy E.= 3 GeV
Circumference 300 m
Beam current I=0.250 A

Horizontal emittance €= 1.1 nm rad
Vertical emittance ey= 0.161 pm rad

Horizontal 8 function Bz= 2.06 m
Vertical g function By=1.32 m
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Figure 3. Flux from a 5 T Super bend (ALS [22]) and a SCW (Elettra [23]).
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Figure 4. Brightness spectra from a 5 T Super-Bend (ALS [22]), a SCW (Elettra [23]), a
IV-SPU (Diamond [24]), a SCU (APS [25]) and a CPMU (under development at the HZB [26]).
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