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Abstract.  The Taylor-Couette flow with radial temperature gradient  is a canonical problem 
for the study of heat transfer in engineering issues. However, gaining insight into the 
transitional Taylor-Couette flow with temperature gradient still requires detailed experimental 
and numerical investigations. In the present paper we have performed computations for the 
cavity of aspect ratio = 3.76 and radii ratios = 0.82 and 0.375 with the heated rotating 
bottom disk and stationary outer cylinder. We analyse the influence of the end-wall boundary 
conditions and the thermal conditions on the flow structure, and on the distributions of the 
Nusselt number and torque along the inner and outer cylinders. The averaged values along the 
inner cylinder of the Nusselt number and torque obtained for different Re are analysed in the 
light of the results published in [2, 16, 17]. 

1. Introduction 
Transitional flow driven by the combination of the rotation and the thermal gradients determines the 
dynamics which occur in complex industrial flows. The Taylor-Couette flow is one of paradigmatical 
systems in hydrodynamics very well suited for studying the primary instability,  transitional flows and 
fully turbulent flows in the varying temperature fields. An overview of issues related to the Taylor-
Couette flow with heat transfer can be found in [1, 2]. Regardless of the significance of the problem 
for basic research, the results obtained for the geometrically simple Taylor-Couette flow can be 
directly used in designing and optimizing many devices, such as: cooling systems in gas turbines and 
axial compressors, ventilation installations, desalination tanks and waste water tanks, nuclear reactor 
fuel rods [3, 4, 5, 6]. The Taylor-Couette flow is governed by the following parameters: radii ratio 

21 / RR   (where 1R  and 2R  are the radii of the inner and outer cylinders respectively), by curvature 
parameter Rm )/()( 1212 RRRR   and by aspect ratio )/( 12 RRH  , where H is the axial 
dimension of the domain, figure 1. Reynolds number is defined in the following way: 

 /)(Re 112 RRR   where   is the rotation of the inner cylinder and the bottom disk,   is the 
kinematic viscosity of the fluid. The heat transfer is characterized by the thermal Rossby number 

)( 12 TTB   , where 2T  and 1T  are temperatures of the heated and cooled walls (  is thermal 
expansion coefficient). 
     The literature on the Taylor-Couette flow with heat transfer includes experimental, theoretical and 
numerical studies [7, 8, 9]. Instability and transitional process in the cavity of large aspect ratio >100 
and narrow gap were investigated experimentally, among others, in the papers [10, 11]. The 
experimental results of the heat transfer obtained in the cavity of aspect ratio Γ= 31.5 (η ∼ 0.5) were 
published in [12, 13]. The numerical simulations [14] obtained for the cavity of Γ = 10, η = 0.5 
delivered detailed information on the flow structure, but the results revealed discrepancies between the 
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experimental results and numerical ones. These discrepancies were attributed to the influence of the 
end-wall boundary conditions. The effect of the end-walls was intensively investigated for the 
isothermal fluid flow in [15], where the authors applied the asymmetric end-wall boundary conditions. 
In most of the Taylor-Couette flow numerical simulations the assumption of periodicity condition in 
axial direction has been used. This assumption significantly reduces the computational cost due to the 
fact that variables can be expanded as a Fourier series in the axial direction, which simplifies the 
numerical approach. Lopez et al. [2] investigated numerically the heat transfer in fluid flows between 
rotating cylinders (5 ≤ Γ ≤ 80) using no-slip boundary conditions at the end-walls and also, for 
comparison, using the periodicity condition in axial direction. They showed that the numerical results 
obtained with the axial periodicity condition agree with those obtained for closed cavities only for 
small Rayleigh numbers. 
     In the present paper we analyse the transition process in the Taylor-Couette flow in cavities of 
small aspect ratio = 3.76, and radii ratios = 0.82 and 0.375 with the heated rotating bottom disk 
and the heated stationary outer cylinder (the rotating inner cylinder and the stationary top disk are 
cooled). The Boussinesq approximation is used to take into account the buoyancy effect induced by 
the involved body forces i.e. the Coriolis force, the circumferential force resulting from the angular 
velocity of the rotor and the circumferential  force, which is caused by the curvature of the particle 
track. In the paper we analyse the influence of the asymmetric end-wall boundary conditions and the 
thermal boundary conditions on the flow structure and on the axial and radial distributions of many 
physical parameters. We focus particularly on the dependence of the Nusselt number and torque [16, 
17] averaged along the inner and outer cylinders of Reynolds number. The objective is also the 
examination how the influence of the end-wall boundary conditions on the flow structure depends on 
the curvature of cylinders, parameterized in the paper by . These results are discussed in the light of 
the data obtained from correlation formulas proposed by Lopez et al. [2] for an infinitely long cavity 
and for the cavity of aspect ratio = 10. The analysis is supposed to show the possibilities of using 
the existing data obtained for the infinitely long cylinders to predict  processes in the cavities of small 
 closed by the end-walls.  
     The outline of the paper is as follows: the mathematical and numerical models are given in section  
2. The flow structure, the radial profiles of the mean angular velocity and momentum, and the radial 
profiles of the dimensionless temperature obtained for cavity of = 3.76, = 0.82 are presented in 
section 3.1. The distributions of the Nusselt number and torque along the inner and outer cylinders, as 
well as, the dependence of the averaged values from Re are analyzed in section 3.2. In section 4 the 
flow structure obtained for the isothermal and the non-isothermal flow cases of = 3.76,= 0.375 
are discussed. The conclusions are given in section 5.   

2. The mathematical and numerical approaches 
We consider the flow with heat transfer between two concentric cylinders of aspect ratio 76.3  
and radii ratios 0.82 and 0.375 closed by end-walls. The inner cylinder of radius 1R  and the bottom 
disk rotates at a constant angular velocity  , while, the outer cylinder of radius 2R  and the top disk 
are at rest. The flow is described by the Navier-Stokes, continuity and energy equations written in a 
cylindrical coordinate system ),,,( ZR   with respect to rotating frame of reference: 

 0V   (1) 

 VV2)(V)V(V  

 PR

t
 (2) 

 TaT
t
T 

 )V(  (3) 

where t is time, R is radius, P is pressure,  is density, V is the velocity vector, a is the thermal 
diffusivity and  is the dynamic viscosity. The dimensionless axial and radial coordinates are: 

)2//(HZz  , ]1,1[z , )/()](2[ 1212 RRRRRr  , ]1,1[r .  The velocity vector components in 
radial, azimuthal and axial directions are depicted by U, V and W, respectively, T is temperature. The 
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Boussinesq approximation is used to take into account the buoyancy effects induced by the involved 
body forces )],(1[ 1TTr   , where Pr T)/(/1   . For validity of Boussinesq approximation 

the thermal Rossby number )]( 12 TTB    is limited to .1.0B The Prandtl number is equal to 0.71. 
The velocity components are normalized as follows: ,/ 2RUu   ,/ 2RVv  ./ 2RWw   The 
dimensionless temperature is defined in the following way: )./()( 121 TTTT   The no-slip boundary 
conditions are applied to all rigid walls ).0( wu  For the azimuthal velocity component the 
boundary conditions are: 0v  on the rotating inner cylinder and rotating bottom disk, and 

)1/()(  RmrRmv  on the stationary outer cylinder and stationary top disk. The bottom disk and 
the outer cylinder are heated 1 , and the top disk and the inner cylinder are cooled .0  In order to 
eliminate singularities of the azimuthal velocity components at the junctions between the rotating and 
stationary walls, the azimuthal velocity is regularized by exponential profiles. The exponential profiles 
are used also for temperature at the junctions between the heated and cooled walls.  

The numerical simulations (DNS/SVV) are based on a pseudo-spectral Chebyshev-Fourier-Galerkin 
collocation approximation. In time approximation we use a second-order semi-implicit scheme, which 
combines an implicit treatment of the diffusive term and an explicit Adams–Bashforth scheme for the 
non-linear convective terms. In the non-homogeneous radial and axial directions we use Chebyshev 
polynomials with the Gauss–Lobatto distributions to ensure high accuracy of the solution. 
Predictor/corrector method is used. All dependent variables i.e. predictors of three velocity 
components u, v and w, predictor of pressure and temperature, and corrector for pressure  are obtained 
by solving Helmholtz equation [18, 19, 20].    
     For higher Reynolds numbers the SVV method is used. In this method an artificial viscous operator 
is added to Laplace operator to stabilize the computational process, [20]. The SVV operator is 
sufficiently effective to suppress Gibbs oscillations and simultaneously the SVV does not affect the 
solution accuracy. More detailed information about SVV algorithm can be found in [21, 22, 23]. For 
the visualization purpose we use the 2  criterion. The computations have been performed using mesh 
of 5-10 million collocation points. The time step is from the range .0005.001.0 t . The 
verification of the DNS/SVV algorithm has been done in [22, 23]. 
 

  

Figure 1. Schematic picture of the Taylor-Couette flow. 

3. Selected results obtained for the flow case of = 3.76, = 0.82 
3.1. The flow structure 
In the cavity of aspect ratio = 3.76 and radii ratio = 0.82 with the heated bottom rotating disk and 
the stationary outer cylinder the Taylor-Couette vortices are formed at Re=80 above which three 
vortices in the meridian section are created, figure 3a. We observe the inflow jet along the top 
stationary end-wall and the outflow jet along the rotating bottom disk. The transition to unsteadiness 
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takes place at Re = 916.7 (the critical Re of transition to unsteadiness for the isothermal flow case 
equals Re = 959). At Re = 916.7 we observe 10 spiral vortices (figure 2a) rising from the rotating 
bottom disk of the azimuthal wave lengths a/(H/2) = 1.7 (in the isothermal flow case we observe 15 
spirals of the azimuthal wave length a/(H/2) = 1.13). The spirals occupy a large part of cavity and 
influence the total flow structure. We have traced the azimuthal velocity component in time in the 
middle section near the top disk, which allows us to characterize the growing disturbances, figure 2b.  
     Figures 3b, 3c, 3d and 3e show the axial profiles of the dimensionless temperature  ,t , the 
azimuthal velocity component ,,tv   the turbulent heat flux components  ,'' t  and  ,'' tv   
obtained in the middle section of cavity ( ,... t  stands for values averaged in time and in azimuthal 
direction). The meridian flow colored by the dimensionless temperature (figure 3a) allows for 
correlation between the flow structure and the presented axial profiles. The axial profiles of ,,tv   
and  ,t  clearly show the existence of two boundary layers at the bottom and top disks. We can see 
that all extreme values of the presented parameters are connected with the location of the inflow and  
outflow jets. We observe particularly large peaks in the axial profiles of the turbulent heat flux 
components  ,'' t  and .'' , tv   
 

 
a)                                                                b) 

Figure 2. The 2 iso-surfaces along the cylindrical surface near the inner cylinder (a),  v = f(t) 
obtained in the middle section, r = 0. Re = 916.7, = 3.76, = 0.82, B = 0.1. 

      

 
a)                  B)b)                              c)                           d)                               e) 

Figure 3. The meridian flow structure (a), the axial profiles of: the azimuthal velocity component  
,tv   (b), the dimensionless temperature  ,t  (c), the components of heat flux tensor  ,'' t  (d)  

and  ,'' tv    (e). = 3.76, = 0.82, B = 0.1. 
 
     Figure 4 presents the radial profiles of the dimensionless temperature ,),( tRA  the angular 
velocity tRARVRV ),(1)//()/(   and the angular momentum tRAVRVR ),(1)/()(   normalized but its 
value at the inner cylinder ( ),(... RA  stands for time and cylindrical surfaces average). The angular 
momentum (AM) and the angular velocity profiles (AV) are obtained for the isothermal (B = 0) and  
non-isothermal fluid (B = 0.1), Re = 1779. From figure 4b we can see that the heating of the rotating 
disk and the outer cylinder results in the decreasing of tRARVRV ),(1)//()/(   and of 

tRAVRVR ),(1)/()(   in the central part of the cavity, in comparison to the isothermal flow case (B = 

XXII Fluid Mechanics Conference (KKMP2016) IOP Publishing
Journal of Physics: Conference Series 760 (2016) 012035 doi:10.1088/1742-6596/760/1/012035

4



 
 
 
 
 
 

0). This may be due to the fact that with increasing fluid temperature near the rotating disk the density 
of fluid decreases and so does the centrifugal force. The inverse effect is obtained by increasing Re.  
 

 
                                           a)                                                                                  b)                        

Figure 4. The radial profiles: of the  dimensionless temperature, B = 0.1 (a), of the angular velocity  
and the angular momentum, B = 0.1 and B = 0.0 (b). Re = 1779.  = 3.76, = 0.82. 

3.2. Distributions of Nusselt number and torque  
The heat transfer across the gap is characterized by the distributions of Nusselt number along the inner 
cylinder and the outer one. The local Nusselt number is obtained in the following way  

 /)( 12 RRNulocal  , where   ( ))/()/( 12 TTRT    is a heat transfer coefficient and   is a 
thermal conductivity; the average value is depicted by Nu. Following [16, 17] we also analyze the 
distributions of the local transverse angular momentum current 

  ,
3 ]/)/(/[ tRRVRUVRj   

and, after averaging, in axial direction, its mean value 
  ),(

3 ]/)/(/[ RARRVRUVRJ  . The 

mean J  is normalized by its laminar value 
lamJJNu / , [16]. In [16] the authors showed 

theoretically that the mean current Nu  is independent of radius in the infinitely long cavity. 
 

 
a)                              B)b)                                                  c) 

Figure 5. a) The meridian flow, b) localNu  as a function of z, c) 



lamt Jj /,  as a function of z,  

the outer cylinder. B = 0.1, = 3.76, = 0.82. 
 

     In figure 5 we analyze the axial distributions of the local Nusselt number localNu  (figure 5b) and 





lamt Jj /,  (figure 5c) obtained along the outer cylinder for different Re. We can see that the peak 

values of localNu  are connected with the outflow jets. The peak value at the top disk (figure 5b) is 
connected with the singularity of temperature at the junction between the heated outer cylinder and the 
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cooled top disk. The extreme values of 



lamt Jj /,  are observed at the bottom disk (such large 

value is partly due to the singularity of the azimuthal velocity component at the junction between the 
rotating bottom disk and the stationary outer cylinder). The remaining peak of 




lamt Jj /,  is 

located at z = 0.4. Along the inner cylinder the peak values of localNu  and 



lamt Jj /,  are 

connected with the inflow jets. We observe the similarity between the axial profiles of localNu  and 





lamt Jj /,  in the central part of cavity (both in their shape and values).  
 

 
Figure 6. The Nusselt number Nu and Nu  as a function of Reynolds number with trend lines,  

(= 3.76, ),  comparison with the results obtained in [2].  
 
     In figure 6 we summarize the results by presenting the averaged values Nu and Nu  as a function 
of Re. The averaged values are obtained at the inner cylinder (depicted by 1, 11, NuNu ) and at the 
outer cylinder (depicted by 2, 22 , NuNu ). The results are compared with the data obtained from the 

correlation formula 53.0
1 Re13.0Nu proposed in the paper [2], where the authors investigated 

numerically (DNS) the flow in infinitely long cavity with the periodicity condition in axial direction  
(cavity with a heated rotating inner cylinder, a cooled stationary outer one, = 0.5, Pr = 0.71, Ra = 
1420, [2]). They also performed simulation in the cavity of  = 10 with the no-slip velocity condition 
at the end-walls and they proposed the following formula 51.0

1 Re14.0Nu  for this flow case.  From 

figure 6 we can see that our results agree with the data obtained from 51.0
1 Re14.0Nu  ( = 10), in 

spite of differences in thermal boundary conditions. The differences between results are larger, for Re 
> 1000, when we compare our results with the data [2] obtained with the periodicity condition in axial 
direction. The Nusselt numbers at the outer cylinder 2Nu  are smaller in comparison to 1Nu , 
approximately 78.0/ 12 NuNu . From figure 6 we can also see that our Nusselt number distribution 

1Nu  agrees well with the distribution of 1
Nu , and that 2

Nu  is larger than 1
Nu . For Re=1620, 

B=0.1 we estimate the difference between values 2
Nu  and 1

Nu  as follows: 
23.0/)( 112   NuNuNu . The result shows that in the considered flow cases the influence of the 

end-wall boundary conditions is large (for infinitely long cylinders )12
 NuNu  .  

4. Selected results obtained for the flow case of = 3.76, = 0.375 
In this section we present a comparison of the flow structure obtained with the isothermal and non-
isothermal boundary conditions in the cavity of radii ratio  = 0.375. For the isothermal fluid flow (B 
= 0) the three-cell Taylor-Couette flow structure is formed at Reynolds number Re = 80. At about Re 
= 270  the middle vortex is squeezed by the growth of the vortex adjacent to the bottom rotating disk 
(this process was previously described in [15]). Finally, the steady three-cell structure collapses to a 
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one-cell structure at the critical Reynolds number Re = 281 via a saddle-node bifurcation. The 
transition to unsteadiness occurs at Re = 492. Above Re = 492 we observe six spirals of the 
dimensionless azimuthal wavelength  ,6128.0)2//( Ha figure 7d.  
      

 
a)        )b)               c)                                      d)                                e) 

Z  
     f)           g)                 h)                            i)                                  j) 

Figure 7. The flow structure obtained for different Re: a) Re = 176, B = 0, b) Re = 270, B = 0, c)  
Re = 281, B = 0, d) Re = 586, B = 0, e) Re = 4500, B = 0, f) Re = 176, B = 0.1, g) Re = 286, B = 0.1, 

h) Re = 288, B = 0.1, i) Re = 560, B = 0.1, j) Re = 890.6, B = 0.1. = 3.76, = 0.375. 
 

     The same computations have been performed for the thermal Rossby number B=0.1 with the heated 
outer stationary cylinder and the rotating bottom disk. The use of the non-izothermal boundary 
conditions changes the procedure of the transition from the three-cell structure to the one-cell 
structure. Again, the three-cell structure is formed at approximately Re = 80, then at approximately Re 
= 286 the top vortex is squeezed by the growth of the vortex adjacent to the bottom rotating disk, 
which results in the appearance of the two-cell structure at Re = 288, figure 7h. The flow is pumped 
outward along rotating bottom disk in accordance with the boundary condition, and it is pumped 
radially outward along the stationary top disk in opposite direction to what we can expect from the 
boundary condition. However, in the corner between the inner rotating cylinder and the stationary top 
disk there is a very small vortex (hardly visible in figure 7h) which rotates in accordance with the 
boundary condition. The transition to unsteadiness takes place at Re = 553, above which we observe 
four spiral vortices. From figures 7f-7i we can see that with the increasing Re the top vortex gradually 
shrinks and finally the one-cell structure is formed. We can conclude that the use of the non-
isothermal boundary conditions delays the formation of the one cell-structure in comparison to the 
isothermal flow case (and generally slightly weakens the effect of the end-wall boundary conditions). 
The similar procedure of the transition from the three-cell structure to the one-cell structure we 
observe in the flow case of = 3.76, = 0.524, B = 0. For higher radii ratios and the 
classic Taylor-Couette laminar-turbulent transition takes place.  

5. Conclusions 
In the paper we investigate, with the use of DNS, the transitional Taylor-Couette flow between the 
rotating inner cylinder and bottom disk, and the stationary outer cylinder and top disk (the bottom disk 
and the outer cylinder are heated). The computations have been performed for the cavities of = 3.76 
and different radii ratios = 0.375, 0.524, 0.615, 0.756 and 0.821 (in the paper attention is focused on 
the flow cases of = 0.375 and  0.821; B = 0 and 0.1, Pr = 0.71).  
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     For all flow cases we observe the strong effect of the Ekman boundary layers on the flow structure, 
however, this effect depends on the curvature of cylinders (). For the flow case of = 0.375 (B = 0), 
the effect of end-walls is so strong that it leads to a rapid transition from the three-cell structure to the 
one-cell structure. The use of the non-isothermal boundary conditions results in the appearance of an 
intermediate two-cell structure which delays the transition. The same scenario takes place in the flow 
case of = 0.524. For other values = 0.756 and 0.821 we observe the gradual development of the 
three-cell structure illustrated in section 3.1.  
     In order to better characterize the influence of the undertaken boundary conditions on the flow we 
examine the axial distributions of the local transverse angular momentum current  




lamt Jj /,  and 
the distributions of the local Nussent number along the inner and outer cylinders. The comparison 
shows the similarity between the axial profiles of localNu  and 




lamt Jj /,  in the central part of the 
cavity but we observe large influence of singularities (of temperature and v) on the distributions near 
the disks. The distributions of the averaged values 1212 ,,, NuNuNuNu   as a function of Re show that 

1
Nu  and 1Nu  take very similar values. Simultaneously, 1Nu  is larger than 2Nu ; we estimate the 

correlation as 78.0/ 12 NuNu . The comparison with the correlation formula 51.0
1 Re14.0Nu  [2] 

obtained for = 10 shows agreement. However, we observe discrepancies for Re > 1000 in 
comparison to correlation proposed in [2] for infinitely long cavity. The results obtained for = 3.76 
show that in the configuration of such low aspect ratio the influence of the end-walls is very large, 
particularly for smaller .  
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