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Abstract. The paper presents the results of experimental investigation of velocity field in the 
vicinity of synthetic jet actuator as a function of Stokes number and for constant Reynolds 
number. A constant temperature hot-wire anemometer with tungsten–platinum coated single 
wire probe used for the velocity measurements. Synthetic jet flow visualization was presented, 
especially process of vortex ring development. Synthetic jet velocity profiles were compared 
with a solution to fully-developed pipe flow with an oscillating pressure gradient.  

1.  Introduction 
Since the end of the last century, the synthetic jet has been the subject of both experimental and 
numerical investigations, usually under the name “SJ” synthetic jet [4][5] or “ZNMF” zero net mass 
flux [8][7]. A synthetic jet actuator consists of an oscillating driver and cavity that contains one or 
more orifice. This driver may be for example a loudspeaker, piezoelectric diaphragm or a mechanical 
piston. The device is called ZNMF because the integration of the mass flow rate across the orifice over 
an integer number of cycles is equal to zero. Although there is no net mass transfer to ambient fluid, 
the ZNMF device has the interesting property of causing a finite amount of momentum transfer to 
ambient fluid [2]. 

 
Figure 1. Schematic of a device producing a synthetic jet, a) suction stroke, b) production a vortex 

ring during ejection stroke c) vortex ring propagates away from the orifice: ① - cavity,  
② - diaphragm, ③ - orifice, ④ - ingested fluid, ⑤ - vortex ring 

 
Figure 1 illustrates a typical synthetic jet actuator being operated to producing a synthetic jet. If the 
diaphragm amplitude ② is high enough, as fluid is expelled through the orifice ③ the boundary layer 
separates from the wall and, at edge of the orifice, it rolls up to produce a vortex ring ⑤. This vortex 
ring propagates away from the orifice under its own self-inducted velocity. During the subsequent 
suction stroke, fluid ④ is drawn into the cavity ① from the surrounding, but the vortex ring has 
moved sufficiently far from the orifice so as to be relatively unaffected. A new vortex ring is then 
ejected and the cycle continues, producing a train of vortex rings (fig. 2a). In a time-averaged sense, 
this behaviour creates a jet-like flow which is synthesized from the ambient fluid (fig. 2b). 
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Figure 2. Synthetic jet: a) instantaneous b) time-averaged 

Synthetic jet can be used to reduce aerodynamic drag. Reducing aerodynamic drag of bodies was the 
subject of studies presented in [9]. Synthetic jet actuator mounted in the rear bumper of the Renault 
Altica has been used to reduction of frontal drag, which at a speed of 130km/h has about 15% lower 
drag coefficient using the synthetic jet as compared to the case when the synthetic jet generator was 
switched off [10]. Underwater engines using synthetic jet recently attracted the attention of researchers 
because they solve the limitations of the current techniques of manoeuvring underwater vehicles [11]. 
The most promising application of synthetic jet is heat transfer enhancement, both impinging jet as 
well as in combination with cross-flow [12][13][14].  Synthetic jet actuator have also been used for 
controlling airflow in aircraft to enhance lift, increase manoeuvrability, control stalls, and reduce 
noise [15].  

2.  Experimental setup 
a) Synthetic jet actuator 

The cavity designed for the purpose of the present study is shown in (fig. 3). It consists of an actuator 
(loudspeaker STX W.18.200.8.FGX) of 150 mm diameter as the vibrating element fitted to a plexiglas 
sheet having a centered bore of 150 mm. The loudspeaker nominal impedance is 8Ω, and nominal 
resonance frequency is 37Hz. The sheets are fastened using four 8 mm bolts. The depth of the cavity H 
can be adjusted by adding (or removing) plexiglas plates with 150 mm bore in between. Experiments 
are carried out for three orifice diameters d=9, 15, 24 mm, for one orifice lengths t=5 mm, and for one 
cavity depths H=20 mm. Working fluid is air. We used a sharp edge orifice. The coordinate system is 
presented in the (fig. 3). Note that x is axial and r is radial coordinate. All connections between sheets 
and the loudspeaker have been sealed with silicone paste for the purpose of the leakages elimination. 
The actual measured resonance frequency of the loudspeaker is 38Hz. 

 
Figure 3. Schematic b) photo of the synthetic jet actuator. Note that t is the orifice thickness, d is   

           the orifice diameter, H is the cavity depth, r – radial coordinate, x – axial coordinate. 

a) b) 

a) b) 
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A digital sinusoidal signal generated from LabView application is converted to analog signal with 16-
bit 48kHz Realtek ALC889 DAC (Digital to Analog Converter). The LM3886 Texas Instruments 
amplifier is used to amplify analog signal from DAC and to excite the actuator. Multifunction board 
(Keithley KPCI-3116A) is used for the purpose of continuous monitoring of the actuator input. The 
measurement of current in conjunction with voltage gives electrical power supplied to the loudspeaker. 
The output voltage from the actuator is maintained constant for particular set of experiments. The 
sampling frequencies of current and voltage measurements are 32 times the actuator excitation 
frequency.  

b) Velocity measurement 
A constant temperature hot-wire anemometer (HPA 98 The Strata Mechanics Research Institute) with 
tungsten–platinum coated single wire probe of sensing element length 1mm is used for the velocity 
measurements. During calibration conducted in the low-speed wind tunnel of Rzeszow University of 
Technology, the reference velocity was measured with a Pitot tube connected to the FirstSensor 
HCLA differential pressure transducer. Measurement points are fitted with a 6th order polynomial 
curve with a maximum error of 2%. The hot-wire probe is mounted on a two-dimensional 
manipulator, which allow positioning the probe with an accuracy of 0.01 mm. The sampling frequency 
was at least 32 times the excitation frequency for all velocity measurements. The Constant temperature 
anemometer (CTA) probe was 1mm offset from orifice, such procedure turned out to be infeasible due 
to the hazard of the destruction of hot-wire probe (fig. 4). 

 
Figure 4. Constant temperature anemometer (CTA) probe position with respect to synthetic jet 

generator orifice exit 

c) Flow visualization 
Synthetic jet flow visualisation was realized utilizing light sheet and glycerine vapour (fig. 5). Flow 
visualization setup consists of: green laser, cylindrical lens, synthetic jet actuator, heaters soaked with 
glycerine and HD digital camera. Glycerine vapour was illuminated by light sheet. 

 
Figure 5. Synthetic jet flow visualization setup: a) schematic, b) photo 

The images were captured with a digital camera with a resolution of 1920x1080 HD and 24 frames per 
second. Due to limitations in the recording speed, a synthetic jet was generated for a constant Stokes 
number Stk=22, a variable Reynolds number in range, Re = 0 ~ 3340. The uncertainty of the start of 
the cycle for each series is +/- 1 frame. 
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3.  Data reduction 
The Reynolds number is calculated using the procedure given by Holman et al. [1] based on spatial 
and time-averaged exit velocity during the ejection stroke which is the most common definition: 

ܴ݁ =
ܷ ∙ ݀

ߥ
 (1) 

d- Orifice diameter, ν- kinematic viscosity. 
Where characteristic velocity U was defined as: 
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T – Period, A – orifice area, u – instantaneous velocity 
Root mean square velocity at orifice centreline: 
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Average velocity at orifice centreline: 
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The Stokes number is calculated according to the definition given by Holman et al. [1]: 

݇ݐܵ =  ඨ2݂݀ߨଶ

ߥ
 (5) 

f – sinusoidal signal frequency 
The Strouhal number: 

ݎܵ =  
ଶݐܵ

ܴ݁
 (6) 

4.  Results 
a) Flow visualization 

In this paper synthetic jet flow visualisation was reduced to one vortex ring development in one 
period.  

 
Figure 6. Synthetic jet flow visualization – development of vortex ring 
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Vortex ring formed in synthetic jet actuator orifice are presented in (fig. 6). Visualization of the 
formation of the synthetic jet shows the steps to create a coherent structure of the vortex ring. Fluid is 
expelled through the orifice (fig. 6a). The discharging liquid from an orifice begins to curl on the edge 
of the orifice (fig. 6b). Initial thin boundary layer ejected from the orifice, it begins to curl into a 
vortex ring (fig. 6c, d). Ejected fluid from the cavity pushes vortex ring out of the orifice (fig. 6e). On 
the last picture we can observe fully developed vortex ring (fig. 6f).  
 

b) Axial velocity profile 
Synthetic jet close to orifice is dominated by vortex rings which along axial distance increasing their 
mass and then break down to form a turbulent flow. Instantaneous velocity close to orifice consists of 
ejection and suction stroke, so time dependent velocity look like sinusoidal wave. Therefore average 
centreline velocity  tends to zero for x/d→0. Average velocity reach maximum at about x/d=2, which 
indicate that suction stroke has area of influence up there.  Root mean square velocity reaches 
maximum close x/d→0, after which there is appear a plateau.  

 
Figure 7. Streamwise variation of time average velocity and momentum synthetic jet velocity  

at centreline d=15mm; t=5mm; H=40mm; x/d=0÷20; r/d=0, Re=22950, 1/Sr=12.2 
 
Chaudhari et al. [17] has shown that self-similarity of the velocity profile occurs after a distance of 7 
times the orifice diameter. Mallison et al. [18] reports a value of 10d and Cater and Soria [19] report a 
value of 15d based on the mean velocity. The experimental results show that beyond x/d of 9 the 
velocity indeed decays as x-1, which indicates that the jet is self-similar beyond this distance. 
 

c) Analytical model 
The problem of fully-developed pipe flow with an oscillating pressure gradient is the most reasonable 
exact solution available to model flows emanating from the orifice of synthetic jet actuator. 
The nondimensional solution for the radial velocity profile [1]: 
 

ݑ
௠௔௫ݑ

= −݅ ∙
16

ଶ݇ݐܵ ቎1 −
଴ܬ ቀݎ

݀ ∙ ݇ݐܵ ∙ √−݅ቁ
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቏ ∙ ݁௜ఠఛ (7) 

 
Where: u – velocity, Stk – Stokes number, τ – time, r – radial coordinate, d – orifice diameter,  
J0 – zero order Bessel function. 
This solution of Navier-Stokes equations shows the velocity profiles during the ejection stroke (fig. 7) 
for several Stokes number in range Stk=1÷100 obtained from the solution (7). For small values of the 
Stokes number Stk=1÷8 radial velocity profile is similar to a parabola (fig. 7), representing Poiseuille'a 
pipe solution. Then, with the increase of the Stokes number Stk>8 it can be seen that the maximum 
velocity does not occur in the centreline, but shifts to the edges it is known, as Richardson effect [16]. 
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Figure 8. Normalized radial velocity profile vs. normalized radius for several Stokes number 

 
d) Radial velocity profile 

For comparison the profiles obtained from the solution of the Navier-Stokes equations (7) for an 
infinite tube with oscillating pressure gradient, radial velocity profiles of synthetic jet was 
experimentally studies for three Stokes numbers Stk=8.2; 45.1; 84.8 and constant Reynolds number 
Re≈4450. The sampling frequency was increased up to 360S/(s∙Hz) samples per cycle, measuring and 
averaging 100 cycles. The sampling frequency has been chosen due to the uncertainty of angular 
velocity, which in this case is ± 1° for 360° range. 
In (fig. 9) shows the synthetic jet radial velocity profile with the velocity profile obtained from the 
analytical solution (black line). As can be seen, there are discrepancies in the shape of the profile of 
synthetic jet for maximum velocity during the ejection stroke Φ=300°, and the mathematical model. 

 
Figure 9. Synthetic jet radial velocity profile vs. normalized radius for Stokes number: Stk=8.2; 

Re=4334; t=5mm, d=9mm, H=40mm 
 
Differences are due to several reasons; the first is that the radial velocity profiles were measured at the 
distance 1mm from orifice. Another reason is the finite length of the nozzle which in this case is 5mm 
(t/d=0.56), compared with an infinite length in the mathematical model may be another cause of the 
discrepancy. 

For the Stokes number Stk=8.2 radial velocity profile obtained from a solution of the mathematical 
model has a flattened shape of a parabola, with no visible Richardson effect. Synthetic jet velocity 
profile for Stokes number Stk=8.2 has a much uniform profile with a visible Richardson effect  
Φ=300 °. Current velocity reaches a maximum of approximately 11m/s in the ejection stroke, while 
the minimum velocity in the suction stroke reaches about -5.5m/s. 
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Figure 10. Synthetic jet radial velocity profile vs. normalized radius for Stokes number: Stk=45.1; 

Re=4687; t=5mm, d=9mm, H=40mm, 
 
In the (fig. 10) velocity profile for the synthetic for Stokes number Stk=45.1 and Reynolds number 
Re=4687 with the analytical solution for the same number of Stokes number are presented. It can be 
seen that the profile of the synthetic jet is significantly narrower in comparison to the mathematical 
model solution. Furthermore there are no Richardson effects for synthetic jet velocity profile for the 
maximum ejection stroke. It is however clearly visible for Φ=210°. The instantaneous velocity reaches 
up to 10m/s in a ejection part, while the minimum velocity reaches about -5,3m/s. 
In the (fig. 11) velocity profile for the synthetic jet for the Stokes number Stk=84.4 and Reynolds 
number Re=4458 with the analytical solution for the same Stokes number are presented. 

 
Figure 11. Synthetic jet radial velocity profile vs. normalized radius for Stokes number: Stk=84.8; 

Re=4458; t=5mm, d=9mm, H=40mm, 

It can be seen that the Richardson effect appears at profiles Φ=180°÷240° but does not exist for the 
maximum velocity at ejection stroke. In addition, the Richardson's effect of synthetic jet is much 
broader than that implied by the analytical solution. It can be seen that the red line Φ=270° is similar 
in shape to the profile obtained from a mathematical model. Both models are flat. In contrast, showing 
significant differences in the width of the profiles during the ejection stroke which is much wider 
compared to the profile 1, for a low Stokes number. Velocity reaches a maximum of about 7.5 m/s, 
while the minimum velocity reaches about -4,4m/s. 

5.  Discussion 
Tang et al. [3] made experimental and numerical investigation of flows result from the orifice of 
synthetic jet actuator. A good agreement between the prediction and the measurement was achieved. 
For low Stokes number radial velocity profile is remains parabolic, while for high Stokes number it is 
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more uniform for described solution. Experimental investigated velocity profile behave similarly but 
only for low Reynolds number, for high Reynolds number are less qualitative compliance.  
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