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Abstract. The paper deals with the experimental analysis of strong decelerated turbulent 
boundary layer developed on a flat plate. The special design of the test section equipped with 
perforated, movable upper wall allow to generate on the bottom wall turbulent boundary layer, 
which is at the verge of separation. The objective of the work is to examine the effect of 
Reynolds number on non-equilibrium boundary layer. A momentum thickness Reynolds 
number at the inlet to a test section was in the range from 6300 to 10150 what was achieved by 
varying wind tunnel speed. The emphasis is on the analysis of the streamwise Reynolds stress 
and mean velocity profiles and on related scaling issues problem. It was found that for the 
same external conditions defined by the pressure gradient coefficient Cp the effect of Reynolds 
number close the wall is seen even for such a narrow range of Reynolds number. In particular, 
the shape factor revealed more flow resistance on separation with increase in Reynolds 
number. The difference where observed mainly at the beginning of incipient detachment, 
where there is a drop of turbulence activity near the wall while it reaches a maximum value in 
the outer region.  

1. Introduction 
Although a significant amount of research has been devoted to understanding canonical flat plate zero 
pressure gradient boundary layer, it is not the case for adverse pressure gradient boundary layers and 
even more when the flow is approaching separation. The most common problem in the similarity 
analysis is the Reynolds number effect [1]. For zero pressure gradient boundary layer it is known that 
scaling parameters of classical inner or outer scaling are a function of Reynolds number. It is not the 
case for more complex system, where additional length or time scales are introduced by the geometry 
or system dynamics. These scales do not develop in the same manner with Reynolds number as the 
traditional ones [1]. It is the reason why the non-linear effect is observed, what is seen by the rapid 
decrease of near wall viscous length scale and week variation of the outer length scale with Reynolds 
number. This is particularly important when trying to analyze adverse pressure gradient (APG) flows 
and to predict the separation location on curved surface, where due to considerable change of the wall 
shear in the streamwise direction, the turbulence cannot be characterized solely in terms of local 
parameters [2]. In the case when a boundary layer approaches separation the mean velocity 
inflectional profiles produce conditions for emergence of large eddies which interacts with those 
already present in the flow [3]. A different process of decay of those eddies may be responsible for the 
lack of similarity of those non-equilibrium flows. 

Difficulties in scaling of APG wall-bounded flows may also emerge from amplitude modulation 
effect of small scales by large scale structures, which was elucidated by skewness changes of filtrated 
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velocity small and large scale signals [4]. The physical phenomenon of amplitude modulation is still 
unknown, but it seems that it influences the wall-normal momentum transport by the changing the 
convection velocity of small scales [5]. If so, this may postpone separation with rise of the Reynolds 
number. 

In the most available experimental research with APG flows there is a lack of canonical setup [6]. 
The paper is an attempt to fill this gap. The main motivation of the present study is to verify the effect 
of Reynolds number at matched conditions of pressure gradient leading to detachment and to analyze 
how it influence the scaling of mean and fluctuating velocity profiles. 

2. Experimental facility and measurement technique 
The experiment was performed in an open-circuit wind tunnel, where the turbulent boundary layer was 
developed along the flat plate, which was 6870 mm long. The wind tunnel is designed with large 
dimension settling chamber and three contraction sections, which allows to achieve free stream 
turbulence intensity below 1% at the inlet plane. In order to bypass laminar-turbulent transition, the 
tripping of boundary layer after the leading edge was used. The inlet rectangular channel with a length 
of 5.035 m located upstream the proper test section has two pairs of suction gaps aimed to control the 
two-dimensionality of the flow by minimizing of boundary layers on the side walls. In order to reduce 
the effect of secondary vortices developing along rectangular channels the triangular corner inserts 
were used in the whole inlet channel. A slight inclination of the upper wall helped to keep zero 
pressure gradient (ZPG) conditions at the at the entire length of this section. 
 

 
Figure 1. Test section geometry 

 
The specially design test section located at the end of the wind-tunnel (see figure 1) is equipped 

with perforated, movable upper wall. Computer-controlled suction system equipped with a low power 
axial compressor allows for smooth adjustment of the amount of the exhausted air from the top of the 
wall. By playing with the shape and position of the upper wall as well with the suction flux it is 
possible to generate wide range of pressure gradient conditions, while at the inlet channel the zero 
pressure gradient conditions were secured. The static pressure in the test section is increased by the 
throttling at the outlet of the test section. For certain pressure conditions it is possible to generate on 
the bottom wall the turbulent boundary layer, which is at the verge of separation. 

Static pressure measurements were done through pressure holes of 0.5 mm dia, drilled along the 
side line along the streamwise direction, from -700 to 1750 mm of the x coordinate where zero is set at 
the inlet plane (see Fig. 1). The spacing of pressure taps was equal 50 mm. Pressure differences were 
measured by means of DATA INSTRUMENTS DCXL01DN pressure transducer connected to 
KULITE D486 amplifier. The mean relative error of pressure measurements equals 2%. 

The velocity measurements were performed with hot-wire anemometry CCC developed by Polish 
Academy of Science in Krakow. A single hot-wire probe of a diameter d = 3 μm and length l = 0.4 
mm was used. In the experiment for each case the wire length was always below 20 in inner variables 
as it was recommended by Ligrani and Bradshaw [15]. The hot-wire bridge was connected to a 16 bit 
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PC card. Acquisition was maintained at frequency 25 kHz with 30 s sampling records. The ambient 
conditions were carefully controlled during the measurements. In the course of a single profile 
measurement the scatter of ambient temperature at the end of the test section did not exceed 0.2. In 
case when the measured temperature was different from temperature during calibration, the 
temperature correction of CTA voltage was used by Jorgensen [7]. At the same time the free-stream 
velocity was monitored by the means of a Prandtl’s tube. 

The facility is equipped with the computer-controlled 2D traversing system (in streamwise and 
wall-normal direction). The traverse carriage was driven over the maximum displacement of 180 mm 
by a servo motor. Uncertainty of the drive step in wall normal direction was 0.001 mm with the 
smallest step equal 0.01 mm, while in the streamwise direction the uncertainty was equal drive step of 
0.37 mm.  

To have the verified reference friction velocity uτ along the flow except the Clauser plot method, 
the fringe skin friction (FSF) technique was also applied [8]. This method, in contrast to hot-wire 
technique, does not require any assumptions about the form of velocity profile and is very simple and 
reliable. It is based on the relationship between the thinning of an oil film deposited on the surface 
exposed to the flow and the local shear stress. In the experiment described in [9] SOX Whitecroft 
Lighting sodium lamp, emitting the monochromatic light of the wavelength λ = 0.5893 μm, for 
illuminating the oil-film was used. The relative error was in the range of 1% for maximal of skin 
friction value estimated by FSF technique. The shear stresses were compared with the ones obtained 
by modified Clauser plot method with satisfactory results with standard parameters of logarithmic law 
of the wall κ = 0.38 and B = 4.1 taken from hot-wire measurements up to x = 700 mm [10]. The uτ 
values used in the paper were obtained based on FSF method above location of x = 700 mm apart from 
the case of 15 m/s, which was obtained by scaling using the inlet value for each Reynolds number. 

3. Test cases description 
Flow parameters determined in core flow at the inlet plane to test section (i.e. 5035 mm 

downstream the flat plate leading edge), located in the zero pressure gradient area, are the mean 
velocity U ≈ 10, 15 and 20 m/s and turbulence intensity Tu < 1%. The inlet Reynolds number based on 
friction velocity and boundary layer thickness was equal 1900, 2600 and 3300 respectively. To 
activate the side suction gaps the overpressure 15 Pa was set at the inlet plane.  Basic inlet parameters 
have been summarized in Table 1, where ܶݑ is turbulence intensity, ௜ܷ௡ mean velocity outside of 

TBL, ݑఛ friction velocity ݑఛ = ට
ఛೢ
ఘ

momentum loss thickness and ܴ݁ఏ ߠ , = ௎೔೙ఏ
ఔ

 is Reynolds number, 

where ߥ is the kinematic viscosity.  
 

Table 1. Inlet conditions of ZPG turbulent boundary layer. 
 Tu 

[%] 
 ࢔࢏ࢁ

[m/s] 
࢛࣎ 

[m/s] 
 ࣂ

[mm] 
  ࣂࢋࡾ
[-] 

□ <1% 10 0.72 8.26 6300 
○ <1% 15 0.55 8.91 8200 

 <1% 20 0.37 10.3 10150 
 
The grey vertical lines in Fig. 1 represent the positions where the measurements of velocity profiles 
were performed, while detailed comparison was done at three locations marked as dark dashed vertical 
lines. In the last position the boundary layer has a features typical for Intermittent Transitory 
Detachment (ITD) defined by Simpson [11] as 20% of reversed flow. Measurements were performed 
for three different Reynolds number and perfectly matched distributions of pressure coefficient: 

௣ܥ = 1 − ൬ ௎ಮ
௎ಮబ

൰
ଶ
,     (1) 
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shown in figure 2a, where U∞0 is the mean inlet velocity. In figure 2b the Clauser-Rotta pressure 
gradient parameter  defined as: 

ߚ = ∆
௨ഓ

ௗ௎ಮ

ௗ௫
,      (2) 

 
where ∆= ∗ߜ ௎ಮ

௨ഓ
 and ߜ∗is displacement thickness, is presented.  

 
a)                                                                 b) 

0 200 400 600 800 1000 1200

0.0

0.1

0.2

0.3

0.4

0.5

Cp

x [mm]  

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

 

x [mm]  
 

Figure 2. Distributions of the flow parameters: Pressure gradient parameter Cp a) and 
Clauser-Rotta pressure gradient parameter  b) 

 
It is seen that, irrespective of different Reynolds number both ܥ௣ and ߚ distributions matches well. 

This confirms that from the point of view of pressure gradient it was possible to get similar external 
conditions. For the completeness of data figure 3 presents the pressure and the pressure gradient 
distributions.  
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Figure 3. Pressure a) and pressure gradient b) distributions for analyzed range of Re.  

It is seen that the shape of pressure gradient distribution at the wall varies slightly across the cases. 
In particular, the second maximum of pressure gradient (figure 3b) is placed at different position. This 
may be caused by interfering impact of separation on pressure measurements and must be clarified in 
the future. 
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4. Results 
Data analysis starts with the inlet plane. Figure 4 shows the mean streamwise velocity profiles and 
streamwise Reynolds stresses presented in outer scaling (a) and 9b) and inner scaling (c) and (d). In 
the figure ܷ௢ is the outer scale velocity defined as ܷ௢ = 2(ܷஶ − ܷ௬ୀ଴.ହఋ), which is similar to 
Zagarola-Smith scale [12].  
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Figure 4. Mean velocity profiles in outer a) and inner variables c); streamwise 
Reynolds stress distributions in outer b) and inner variables d) at inlet location for 
analysed Reynolds numbers. 

 
Scaling with outer variables aims to show the difference near the wall, while inner scaling reveal 

changes in the outer layer. In the figure the typical effect of Reynolds number is observed. Particularly 
there is an increase of log-layer range for mean profiles and increase of streamwise normal Reynolds 
stress in the outer region, which is related to the rise of a large scales energy in this region. For such a 
narrow range of Reynolds number the near wall peak reveal only minor increase of maximum what 
was also indicated by Marusic et al. [14]. 

Figure 5 presents the downstream evolution of the boundary layer thickness  and shape factor 
H=*/. While the inlet values behave as expected with increase of Reynolds number it is not the case 
for APG region. It is seen that in the direction of the flow and especially at the verge of separation the 
difference between   values decreases. On the other hand, the reaction of shape parameter on Re is 
weaker. Nevertheless, in each case a strong almost linear increase of H from x = 700mm is seen, while 
the beginning of this growth delays with Reynolds number. Such a tendency in H is due to strong drop 
of mean momentum defect.  
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Figure 5. Distributions of the flow parameters: boundary layer thickness  (a) and 

shape factor H (b) 
 
Figure 6 presents the scaling of mean velocity and streamwise Reynolds stress profiles along the APG 
region for the largest Re number (Re = 10150). Because the flow dynamics in separation region is 
dominated by outer layer large scale motions the scaling analysis were performed using outer variables 
introduced already in figure 4a-b.  
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Figure 6. Mean velocity profiles (a) and streamwise Reynolds stress distributions (b) 
for 20 m/s case  

 
In the downstream direction a strong deformation of velocity profile and the change of the shape of 

streamwise Reynolds stress can be noticed. The biggest difference between particular profiles appear 
near the wall. Approaching separation the near-wall peak decreases rapidly and vanishes near the 
separation. On the other hand, the rise of the outer peak is observed, which coincides well with the 
increase of dU/dy observed in figure 6a. In figure 6b the sharp increase in the value of u’u’ in the outer 
region close to separation is seen, what is due to the strong activity of large scale structures. It is clear 
from the above graphs that outer scaling fails in the adverse pressure gradient. This also indicates that 
the constant scaling factor throughout the boundary layer thickness is not appropriate for Reynolds 
stress profiles. 

To compare the Reynolds number effect on APG boundary layer two different locations were 
chosen. First one is x = 900 mm with ߚ ≈ 28 , where there is the greatest difference in the shape factor 
(see figure 5). The second one is the last measuring position x = 1100 mm with the highest pressure 
parameter  ߚ ≈ 80. The comparison is presented in figure 7.  
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Figure 7. Mean velocity profiles a) and b) and streamwise Reynolds stress 
distributions b) and d) respectively for 28 ≈ ߚ and for 80 ≈ ߚ 

Despite that mean velocity profiles well overlaps (see figures 7a and 7b the difference is seen for 
u’u’ especially close to the wall. This is more evident for the first location (x = 900 mm), where strong 
enhancement of the outer peak with the rise of Reynolds number is observed. It confirms the dominant 
role of the outer length scales and it is different to the observed behaviour for canonical zero pressure 
gradient flows visible in figure 4b. Surprisingly, the effect of Reynolds number decays at the last 
location. It is probably due to vanishing of small-scale turbulence and only large scales left to drive the 
flow. The growth of the outer peak, seen in figure 7c, may be also related to mentioned in the 
introduction amplitude modulation effect and the resulting changes of convection velocity of small 
scales which influences wall-normal momentum transport. The symptom of increased momentum 
transport is visible as the elevation of Reynolds stress near the wall (see figure 7c). It is not so clearly 
visible on mean profiles probably due to narrow range of Reynolds number. 

5. Conclusions 
The influence of Reynolds number on turbulent strong decelerated turbulent boundary layer developed 
on a flat plate was analysed. A momentum thickness Reynolds number at the inlet to a test section was 
in the range from 6300 to 10150. 
It was found that for the same external conditions defined by the pressure gradient coefficient Cp the 
effect of Reynolds number close the wall is seen even for such a narrow range of Reynolds number. In 
particular, the shape factor revealed more flow resistance on separation with increase in Reynolds 
number. The difference where observed mainly at the beginning of incipient detachment, where there 
is a drop of turbulence activity near the wall while it reaches a maximum value in the outer region. 
The sharp increase in the value of u’u’ in the outer region is probably due to the strong activity of 
large scale structures. The growth of the outer peak may be also related to mentioned in the 
introduction amplitude modulation effect and the resulting changes of convection velocity of small 
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scales which influences wall-normal momentum transport. Nevertheless the primary reason this 
phenomenon causes the failing of outer scaling methods. Surprisingly, the effect of Reynolds number 
decays at the last location, where the boundary layer has a features typical for Intermittent Transitory 
Detachment having 20% of reversed flow. It is probably due to vanishing of small-scale turbulence 
and only large scales left to drive the flow.  
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