
High performance FDTD algorithm for GPGPU

supercomputers

Andrey Zakirov, Vadim Levchenko, Anastasia Perepelkina, Yasunari
Zempo
Keldysh Institute of Applied Mathematics, RAS, Miusskaya sq., 4, Moscow, 125047, Russia
Hosei University, Faculty of Computer and Information Sciences, 3-7-2 Kajino-cho,
Koganei-shi, Tokyo, Japan

E-mail: mogmi@narod.ru

Abstract. An implementation of FDTD method for solution of optical and other
electrodynamic problems of high computational cost is described. The implementation is based
on the LRnLA algorithm DiamondTorre, which is developed specifically for GPGPU hardware.
The specifics of the DiamondTorre algorithms for staggered grid (Yee cell) and many-GPU
devices are shown. The algorithm is implemented in the software for real physics calculation.
The software performance is estimated through algorithms parameters and computer model.
The real performance is tested on one GPU device, as well as on the many-GPU cluster. The
performance of up to 0.65 · 1012 cell updates per second for 3D domain with 0.3 · 1012 Yee cells
total is achieved.

1. Introduction
The Finite Difference Time Domain (FDTD) method [1] is implemented in numerous codes
for simulation of electrodynamics. The method is easily extended for simulation of other
wave processes, such as acoustic and elasticity waves [2]. This paper deals with an original
approach to the numerical solution of the evolutionary Cauchy problem, the Locally Recursive
non-Locally Asynchronous (LRnLA) algorithms [3]. The difference between the LRnLA method
and conventional methods is that the optimization of computations deals not only with layerwise
computation, but traces data dependencies in a 4D space-time domain [4]. The algorithms are
implemented in codes for various physics modelling [5, 6, 7, 8, 9].

The increase in performance is possible by avoiding stepwise synchronization. This is
the idea of alternative algorithms for stencil computations (trapezoids, time-slicing and time-
skewing [10, 11, 12, 13, 14, 15]). This approach is not wide spread, but the basics may be found
in works by other authors. The so-called loop tiling and loop skewing methods result in similar
algorithms for a simple domain geometry [16, 17, 18, 19]. The research on loop blocking led
to creation of the cache-aware and cache-oblivious algorithms [20]. These were used for stencil
computations of partial derivative equations [21, 15]. In a 1D simulation these methods lead to
trapezoidal and diamond blockings of space. The generalizations to 2D and 3D are possible.

Among these approaches the LRnLA method has the following advantages. The approach
takes account for the complexity of modern computers. The space-time optimization account
for all parallel levels, all levels of the memory subsystem. The theory is built on the model of the
available computer and allows a priori quantitative estimates of the performance of the supposed

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012100 doi:10.1088/1742-6596/759/1/012100

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

method implementation. The theory applies to any physics simulation with local dependencies,
any amount of dimensions.

Some cache-oblivious algorithms coincide with the LRnLA algorithms for lower dimensions.

1.1. DiamondTorre algorithm and its CUDA implementation
The DiamondTorre algorithm is described as a subdivision of 4D space-time region in shapes.
DiamondTorre size is defined by two parameters: the size of the base DTS, and its height TH. More
detailed explanation of the algorithm, its parameters and implementation for wave equation on
1 GPU can be found in [4].

The correspondence of the DiamondTile to the components of staggered grid in X—Y
projection is illustrated on fig. 2. This is defined as the basic element for DiamondTile algorithms
for the FDTD scheme for Maxwell equations with the 4th order of approximation and its size is
DTS=1 by definition. It consists of the two (E-field and B-field) diamonds that are shifted along
the time axis (by half of the time step) and along one coordinate axis (by 1.5 spatial step —
the half width of the chosen scheme stencil). DiamondTorre consists of TH DiamondTile pairs,
shifted in a similar manner against each other. The DiamondTorre algorithm is a process of
making calculations for all points in the described 4D shape. In the GPGPU implementation,
DiamondTorre is a CUDA-kernel. DiamondTorre’s with the same Y-axis position are processed
asynchronously by CUDA-blocks. Inside, cells with different Z-coordinates are processed by
different CUDA-threads.

The DiamondTorre base size DTS=1 is optimal in this case. The higher DTS leads to higher
operational intensity. But with DTS=2 significant performance drops are confirmed, since the
data on one DiamondTile exceeds the GPU register file size, or the instruction count in one
DiamondTorre kernel exceeds the instruction cache size. The register size is taken as 256 KB. If
we choose the number of grid points along Z axis as Nz = 384 (double precision) or Nz = 768
(single precision), the limit of registers per CUDA-thread is estimated as 256K/(768 ∗ 4) = 85.
This roughly corresponds to the amount of data for DTS=1. Also, in this case, one CUDA-kernel
corresponding to DiamondTorre algorithm contains ∼ 1500 instructions. One instruction takes
∼ 8 B, which brings us very close to the instruction cache limit (estimated as 16 KB).

Hy Hz Hx Ex Ez Ey

Figure 1. Field designations

Y

X

Y

X

Figure 2. The field components in one
DiamondTile. Two options.

If we assume that one DiamondTile is loaded into the GPU register, to calculate one B-field
diamond three E-field diamonds need to be loaded. The resulting B-fields need to be saved. It
concludes one half of cell updates in a Diamond, for the other half three B-field diamonds are
loaded and one B-field diamond is calculated and saved. An estimate of data throughput can be
made. With TH → ∞, on average, 3 Yee cell data are to be loaded, and 1 Yee cell data should
be saved per one Yee cell update, 4× 6× 8 = 192 B total. Operation count for one cell update
is about 110 Flop. Operational intensity is obtained as their ratio, 0.57 Flop/Byte.

We use roofline [22] model to estimate the efficiency of the algorithms. For any contemporary
GPU our problem is memory-bound. The theoretical performance is estimated as P/192 Yee
cell updates per second (Ys), where P is GDDR5 memory bandwidth, 192 is the necessary data
throughput. On NVidia Tesla K20 (P = 224 · 109 bytes per second) this equals 1.167 · 109 Ys.

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012100 doi:10.1088/1742-6596/759/1/012100

2

1.2. Calculation window
The advantage of DiamondTorre algorithm is the high performance for large problems in which
field data do not fit in the device memory. It is easily achieved by updating data in a ”calculation
window”, which moves along x-axis in negative direction. Data load and save to/from the global
RAM are performed asynchronously with computations. Only the data for one following group
of asynchronous DiamondTorres are loaded. The data of DiamondTorres which are no longer
necessary for the current TH update are saved and deleted from device memory.

The performance does not decline if the computation time of DiamondTorre is longer than
the time that is necessary for memory copy to/from the device. The computation time increases
linearly with TH, and the copy time is constant. So with high enough TH host-device transfers
are concealed.

1.3. Small scale performance tests
The described algorithms are implemented in code, which features all the required methods for
real physics computations: the FDTD simulation is performed in a 3D spatial domain with
the 4th order accurate scheme; Perfectly Matched Layer (PML) absorbing boundary conditions,
Total Field/Scattered Field (TFSF) wave source and complex material equations according to
Drude, Drude-Lorenz model are used.

Small scale performance tests were conducted to find the optimal algorithm parameters. We
measure performance in Yee cell updates per second (Ys). This number is usually of 109 order,
so the main unit is GYs.

Fig. 3 shows the performance results for a problem size of (600×(3×blocks)×384) with varied
”blocks” parameter and varied TH. For DiamondTorres lined up along Y axis, one CUDA-block
performs computation for one DiamondTorre. The tests were conducted on Tesla K20x. It has
14 streaming multiprocessors (SMs). If the number of involved SMs per device is less than 14,
the performance is limited by by GDDR5 access latency. The latency is about 500 clock cycles
(about 500 ns). From the Little’s law [23], to cover this latency, at least 104 transactions are
necessary.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

G
Y

ee
Ce

lls
/se

c
/ N

de
vi

ce
s

CudaBlocks

no PCI-e transfers
1 device

3 devices
6 devices, 2 nodes
Peak performance

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450

re
la

tiv
e

pe
rfo

rm
an

ce

TH

size 1800x375x384
size 18000x375x384

Host-Device bandwidth 500MB/s
Host-Device bandwidth 4000MB/s

Figure 3. Performance results for varied amount of blocks. Domain size is 600×(3 ·block)×384
(left). Performance results for varied TH (right). The second problem size is 10 times bigger,
so it does not fit into node memory.

The register file should be enough to keep the data of all necessary diamonds. So, for the
Kepler architecture, the maximum vector size (Nz, also equal to the amount of involved CUDA-
threads) is equal to 384 (double precision). This is why the data throughput is not utilized
completely when all 14 SMs are involved (∼ 14 · 384 ≈ 6000 transactions). It is the main
reason why the performance is only 90% from the peak one. It becomes more than 109 GYs for

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012100 doi:10.1088/1742-6596/759/1/012100

3

sufficiently large TH. TH is inevitably smaller near region boundaries, so the performance for real
problems is by few percent lower.

For low TH (fig. 3) the performance is limited by the PCI-express bandwidth. With the
increase of TH the shift to limitation by GDDR5 bandwidth is confirmed. Its smoothness is
explained by the cut-off of DiamondTorres at the edges of the domain. The optimal sufficient
TH is 100, as can be seen on the graph. This value is used in subsequent tests, if not stated
otherwise. A similar behavior of the dependency of performance rate on TH is observed when
the data is stored on a disk (SSD in this case). The optimal TH becomes significantly larger
(more than 500).

1.4. Multi-device and multi-node parallelism
All DiamondTorre’s standing side-by-side along Y axis are asynchronous. So they may be
processed by different devices inside one node, or by different nodes. Judging by the previous
tests (fig. 3) the data transfers between 3 devices on one node may be concealed completely
if the amount of the involved CUDA-blocks is more than 42 on each device. For the devices
installed on different nodes the duration of data transfer is approximately twice bigger. In this
case data transfers may be concealed completely if the amount of the involved CUDA-blocks is
more than 70 on each device.

Additionally, concurrency on X axis is possible. In this case the data are subdivided in
blocks in X axis and distributed between nodes. The data on adjacent nodes overlap by the
calculation window size: NW points of X axis. On the i-th device the data are updated from
the (n+ i ·TH)-th step to the (n+ i ·TH+TH)-th step, where n is an integer number (the time
step on which the data of the leftmost node exists on).

2. Parallel Scaling Results on TSUBAME2.5
The parallel performance of the code has been tested on TSUBAME2.5 supercomputer. Its
specifications, that are important for this study, are as follows. The amount of available node
per one run is up to 300 according to the usage conditions (1408 in total). Each node has 3
NVIDIA Tesla K20x GPGPUs installed. Their total GDDR5 memory is 3×5.625 = 16.875 GB,
with 208 GB data throughput each. Each node has at least 54 GB, up to 96 GB on several ones.
Only a little above 40 GB from it is available for the computation. Devices are connected with
PCI-e 2.0 with 4 GB/sec throughput in each direction. Each node has 120 GB SSD memory.
Nodes are connected by Infiniband QDR interconnect with up to 4 GB/sec throughput.

2.1. Weak scaling
For the weak scaling the domain is scaled proportionally to the amount of nodes used. Both X
and Y axis parallelism were tested. Three series were performed (fig. 4):

(i) Y axis scaling. Data transfers may be concealed (112 CUDA-blocks on each device).

(ii) Y axis scaling. Data transfers limit the performance (42 CUDA-blocks on each device).

(iii) X axis scaling. Each device contains 1890 Yee cells. All 3 devices are involved on each node,
performing parallel computation in Y direction.

In the first case, the parallel efficiency is above 99% as expected. The maximum achieved
performance is 0.65 · 1012 Ys for one computation on domain with 300 · 109 grid points (10 TB
data, 256 nodes). In the second case the performance becomes lower when the number of nodes
rises from 1 to 2. This is because the Infiniband data throughput is lower than data throughput
between devices on one node. The following increase in the number of nodes does not lower the
performance. In the third case parallel scaling is close to ideal, but still less than the one for the
first series. The main decrease occurs between 1 and 2 nodes. It is caused by a slight imbalance
in node utilization.

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012100 doi:10.1088/1742-6596/759/1/012100

4

 1

 10

 100

 1 10 100

 1

 10

 100

pe
rfo

rm
an

ce
, G

Y
ee

 c
el

ls/
se

c

pe
rfo

rm
an

ce
, T

Fl
op

s

compute nodes (3x GPU for each)

limit by InfiniBand bandwidth

1890x(999*nodes)x384
1890x(369*nodes)x384
(1890*nodes)x621x384
linear scaling
peak

 1

 10

 100

 1 10 100

 1

 10

 100

pe
rfo

rm
an

ce
, G

Y
ee

 c
el

ls/
se

c

pe
rfo

rm
an

ce
, T

Fl
op

s

compute nodes (3x GPU for each)

limit by InfiniBand bandwidth

720x3312x384
720x6624x384
720x13248x384
linear scaling
peak

Figure 4. Weak scaling (left). Strong scaling (right)

2.2. Strong scaling
For the strong scaling we chose a fixed size domain. By increasing the amount of nodes, the
domain is subdivided to more and more parts, that are to be processed concurrently. Three
series were performed (fig. 4):

(i) 720× 3312× 384 size domain is scaled on 1–32 nodes;

(ii) 4 times bigger domain (720× 13248× 384) is scaled on 4–64 nodes;

(iii) 16 times bigger domain (720× 52992× 384) is scaled on 16–256 nodes;

With the increase in amount of parallel nodes the performance decreases since the amount
of CUDA-blocks per device becomes lower (see fig. 3). At the same time there is a limit on
maximum Ny size per device, determined by device memory. It actually may be increased,
but the Nx size and TH should be decreased at the same time. This would lower the general
performance. By utilizing more nodes, domain size and TH may be increased again and
performance rises.

This dependency on TH is shown on fig. 5. The problem size is 450× 62208× 128 grid cells.
For one node computation TH is equal to 15, and increases up to 150 for 8 nodes and higher. For
low amount of nodes the speedup is better than linear. This is because TH may be optimized
only when enough data is processed on each node.

Finally, strong scaling tests were performed on a problem with 38400× 363× 128 grid points
(fig. 5). On one node the performance is about 30% from the peak performance, since the size
along Z axis is not optimal. It is not big enough to conceal the GDDR5 access latency, since the
amount of simultaneous transactions is too low. But the acceleration is up to 40 times. Only
with 128 nodes and above the data transfers are taking more time than computation, which
leads to decrease in computation rate.

One node has little memory size (only about 3 times more than total device memory), and
this becomes the reason for the acceleration limit. The increase in the available memory size
should increase acceleration ability proportionally.

3. Conclusion
The work can be summarized as follows. The FDTD code has been developed, that allows
simulation of real optical phenomena. The distinguishing feature of the code is the use
of DiamondTorre LRnLA algorithm, which maximizes the performance on one device, and
parallel efficiency for multi-GPU architectures. The software was tested on the TSUBAME2.5
supercomputer. The high computation rate is achieved (more than 1 billion Yee cell updates
per second on one device). The problem size is not limited by device memory. The scaling for
∼ 1000 devices becomes 1000 for the weak scaling, and ∼ 100 for the strong scaling.

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012100 doi:10.1088/1742-6596/759/1/012100

5

 1

 10

 100

 1 10 100

 1

 10

 100

pe
rfo

rm
an

ce
, G

Y
ee

 c
el

ls/
se

c

pe
rfo

rm
an

ce
, T

Fl
op

s

compute nodes (3x GPU for each)

limit by InfiniBand bandwidth

limit by GPU memory size

450x62208x128, float
linear scaling
peak

 1

 10

 100

 1 10 100

 1

 10

 100

pe
rfo

rm
an

ce
, G

Y
ee

 c
el

ls/
se

c

pe
rfo

rm
an

ce
, T

Fl
op

s

compute nodes (3x GPU for each)

38400x363x128
linear scaling
peak

Figure 5. Strong scaling on Y axis with variable TH (left), on X axis (right)

The algorithm parameters (such as TH and problem size) allow not only qualitative, but also
quantitative estimates of the performance and parallel scaling. Maximal achieved performance
is 0.65 · 1012 for 3D domain with 0.3 · 1012 Yee cells total. For example, such size for wave optics
problems corresponds to 1 cubic millimeter domain. This allows a significant breakthrough in
computational nanooptics, by allowing the simulation in domains that were previously too big
even for supercomputers. It may be used for simulation of complex optical devices.

The work is supported by Hosei International Fellowship grant, RFBR grant no. 14-01-31483.

References
[1] Taflove A and Hagness S C 2005 Computational Electrodynamics: the Finite-Difference Time-Domain Method

3rd ed (Norwood, MA: Artech House)
[2] Virieux J 1986 Geophysics 51 889–901
[3] Levchenko V 2005 J. of Inf. Tech. and Comp. Systems 1 68 (in Russian)
[4] Perepelkina A Y and Levchenko V D 2015 Keldysh Institute Preprints 18 20
[5] Korneev B A and Levchenko V D 2015 em Procedia Computer Science 51 1292-1302
[6] Perepelkina A Y, Goryachev I A and Levchenko V D 2013 Journal of Physics: Conference Series 441 012014
[7] Perepelkina A, Goryachev I and Levchenko V 2014 Journal of Physics: Conference Series 510 012042
[8] Zakirov A.V., Levchenko V.D. 2012 Mathematical Models and Computer Simulations 4 2 pp 155–162.
[9] Kaplan S.A., Levtchenko V.D. et al. Geoinformatika 2011. 1 pp 49-55. (in Russian)

[10] Frigo M and Strumpen V 2007 The Journal of Supercomputing 39 93–112
[11] Tang Y et al. 2011 Proceedings of the Twenty-third Annual ACM SPAA (NY, USA: ACM) pp 117–128
[12] Grosser T et al. 2013 Proceedings of the 6th Workshop on General Purpose Processor Using Graphics

Processing Units GPGPU-6 (New York, NY, USA: ACM) pp 24–31
[13] Orozco D, Gao G 2009 Mapping the fdtd application to many-core chip architectures Parallel Processing,

2009. ICPP ’09 pp 309–316 ISSN 0190-3918
[14] McCalpin J, Wonnacott D 1999 Time skewing: A value-based approach to optimizing for memory locality

Tech. rep.
[15] Strzodka R et al. 2011 Proceedings of the International Conference on Parallel Processing IEEE Computer

Society p 571–581
[16] Wolf M, Lam M 1991 Proceedings of the ACM SIGPLAN 1991 (New York, NY, USA: ACM) pp 30–44
[17] Wolfe M 1989 Proceedings of the 1989 ACM/IEEE Conference on Supercomputing Supercomputing ’89 (New

York, NY, USA: ACM) pp 655–664
[18] Wolfe M 1986 International Journal of Parallel Programming 15 279–293
[19] Terrano A 1988 Frontiers of Massively Parallel Computation, 1988. Proceedings pp 227–229
[20] Prokop H 1999 Cache-oblivious algorithms
[21] Frigo M and Strumpen V 2005 Proceedings of the 19th Annual International Conference on Supercomputing

pp 361–366
[22] Williams S, Waterman A and Patterson D A 2009 Commun. ACM 52 65–76
[23] Little J D C 1961 Operations Research 9 383–387

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012100 doi:10.1088/1742-6596/759/1/012100

6

