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Abstract. Device simulations have become an integral part of semiconductor technology to
address many issues (short channel effects, narrow width effects, hot-electron effect) as it goes
into nano regime, helping us to continue further with the Moore’s Law. TCAD provides a
simulation environment to design and develop novel devices, thus a leap forward to study their
electrical behaviour in advance. In this paper, a parallel 2D simulator for semiconductor devices
using Discontinuous Galerkin Finite Element Method (DG-FEM) is presented. Discontinuous
Galerkin (DG) method is used to discretize essential device equations and later these equations
are analyzed by using a suitable methodology to find the solution. DG method is characterized
to provide more accurate solution as it efficiently conserve the flux and easily handles complex
geometries. OpenMP is used to parallelize solution of device equations on manycore processors
and a speed of 1.4z is achieved during assembly process of discretization. This study is important
for more accurate analysis of novel devices (such as FInFET, GAAFET etc.) on a parallel
computing platform and will help us to develop a parallel device simulator which will be able
to address this issue efficiently. A case study of PN junction diode is presented to show the
effectiveness of proposed approach.

1. Introduction

The recent developments of semiconductor technology is backed-up by Technology Compute
Aided Designs (TCAD), which plays a vital role by providing an efficient simulation environment
to create desired future devices of different geometries and materials . To approximately predict
the electrical behaviour of a semiconductor device, TCAD implements various device physics,
mathematical models such as Drift-Diffusion, Hydrodynamics, Quantum Corrected Boltzmann
and Non-equilibrium Greens Function [1]. These models consist of a number of partial differential
equations (PDEs). Approximate solution of these PDEs is computed using numerical techniques
as it is impractical to get analytical solution. Various discretization methods such as finite
difference (FDM), finite volume (FVM) and finite element (FEM) are available to obtain
numerical solution of a PDE. The advantages and disadvantages of these methods are shown in
Table 1. DG outperforms both FEM and FVM while handling complex geometries with high-
order accuracy and local mass conservation [2, 3]. In 1973, Reed and Hill [4] first introduced
DG method for hyperbolic equations. Later, DG method has been extended to develop different
methods [2, 5, 6] for hyperbolic and nearly hyperbolic problems. As per our knowledge, DG-FEM
is explained in literature but has not been implemented as of now in any of the available device
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simulators. In this paper, we present a semi-parallel device simulator to analyze semiconductor
devices using DG-FEM as the discretization scheme. DG divides the whole geometry into smaller
finite domains called “element” to find numerical solution of PDEs. DG requires substantially
less information about the neighbouring elements making parallelization easier [7]. The proposed
device simulator is capable of generating uniform and non-uniform mesh throughout geometry.
More accurate solution is obtained using non-uniform meshing, with less computation complexity
as compared to denser mesh throughout the geometry. OpenMP [8] directives are used to
parallelize the solution of numerous algebraic equations on manycore processors. Parallelization
in the framework is implemented during assembly process of DG-FEM.

Table 1. Comparison of different discretization schemes [2, 3].

Complex Geometries High-Order Accuracy Local Mass Conservation

FDM X 4 v
FVM v X v
FEM v 4 X
DG-FEM v v v

Rest of the paper is organized as follows. In Section 2, fundamental device equations for
Drift-Diffusion model are discussed. Section 3 describes discontinuous Galerkin discretization
scheme. Implementation details and simulation results are discussed in Section 4. Section 5
concludes the paper.

2. Formulation of Basic Device Equations: Drift-Diffusion Model

The flowchart to build framework for a device simulator is shown in Figure 1, which explains
the simulation process [9] by incorporating several device models. Simulation process is started
by procuring all the data related to device geometry, material parameters, doping profile and
necessary boundary conditions. Device geometry (whole domain) is further divided into smaller
domains in order to solve PDEs locally to complete the process of discretization. Discretiza-
tion generates a mesh throughout the whole geometry to get the solution over all nodes. Then
charge is computed using an initial guess of solution. Calculated charge is then used to iteratively
solve Poisson’s and Continuity equations until the solution converges to a pre-defined threshold.
Gummel’s and Newton-Raphson algorithm [9] is used to implementation both Poisson’s and
continuity equation. Current is calculated at the end of simulation process for specified input
parameters.

The five fundamental physics equations for Drift-Diffusion model to simulate semiconductor
devices are as follows:
2.1. Poisson’s equation

Vo(—evo)=p (1)
where p=q[p—n+ Ng— Ny

2.2. Current equations

Jn = qnpin V7 ¢ +qDp 7 10 (2)
Jp =appp 7 ¢ —qDp 7 p (3)
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Figure 1. Process flow of a typical device simulator.

2.8. Continuity equations

on 1

ot =g VIt @
Jdp 1
a:_gV'Jp—i_Rp (5)

where ¢ is potential, u is mobility, p is space charge density, D is diffusion coefficient, R is net
generation and recombination rate, n & p specifies electron and hole density in conduction and
valance band respectively, ¢ is electrostatic charge, N, is acceptor concentration, Ny is donor
concentration, J is current density, € is dielectric permittivity and ¢ denotes time.

3. Discontinuous-Galerkin Discretization Scheme
DG method is a special case of FEM, in which the basis functions (used for discretization)
are discontinuous piecewise polynomials. Discontinuous basis functions effectively handle
interactions between element boundaries, to achieve accurate and stable results for nonlinear
hyperbolic systems. Features like, high parallelizability, ease of handling complex geometries,
non-linear stability and higher order accuracy makes this discretization scheme more
considerable. The discontinuous basis function with degree of freedom (DOF) 1 and 2 are
as shown in Figure 2 and Figure 3 respectively. The difference in basis functions for FEM and
DG-FEM is as shown in Figure 4 and Figure 5 respectively. DG-FEM basis functions shows
discontinuity at the node point, whereas FEM basis functions are continuous in nature.
To showcase the implementation of DG method, a generic conservation equation is considered
as follows [2]:

ou

5 TV g=0 (6)
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p = 0 basis (1 DOF/element)

Figure 2. DG basis function with one degree
of freedom per element.

Figure 4. Basis function as used in finite
element method.
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p = 1 basis (2 DOF/element)

Figure 3. DG basis function with two degree
of freedom per element.
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n

Figure 5. Basis function as used in DG finite
element method.

Multiplying (6) by a basis function and integrating over the whole domain (2),

/ﬁdv+/vv@W:m V, € P (7)
—El/ dV+XX:/VUMV+%vjmﬁ> (8)

For the efficient conservation of flux on the boundary, two different operators (Jump and

Average) are defined w.r.t.
respectively),

Jump operator : [V,

Average operator :

Applying (9) in (8),

normal it = 7 = -7~

= vfk (wk)

{v}l’k =

(+ and — denotes outflow and inflow

= Ul (wk)

9)

(vfk (xk) + Ul (mk))

—Z/ V- Z/vv ng+Z/ g} + (4 {v}ds (10)

DG discretization is then defined as,

v—— /Vv ng—I—Z/ at

i v, M)dS =0, Y, € ® (11)

The function parameter, v is required to have following properties: i) stability, ii) consistent as
ut =wu~ = 4, and iii) conservative as weight, W =1V, €e, W =0V, ¢ e.
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The global formulation using DG-FEM for equation (6) is,
2/6”3? - XB:/SW - gdv + Zf:/fv(ﬂ+,@,v+,v,ﬁ)d5 =0, V,€® (12)

Global solution of (6) can be written as the summation of local solution of each individual

element:
u= Z u® (13)

The formulation thus reduces to element-wise FEM problem, coupled by internal boundary
conditions. Next section presents implementation details of framework and simulation results.

4. Implementation Details and Simulation Results

A framework to simulate semiconductor devices based on DG-FEM is presented in this paper,
which is capable of simulating 2D device geometries incorporating five fundamental device
equations from Drift-Diffusion model. Discretization process divides whole geometry into various
small elements, which leads to the formation of a mesh like structure through out geometry in
such a way that no two elements overlap each other. Proposed simulator has the flexibility to
select elements of different size and shape, capable of generating both uniform and non-uniform
mesh. Triangular elements have been chosen in our simulator to discretize 2D geometry, although
the module used in our proposed device simulator supports linear, triangular and quadrilateral
basis functions as well. The choice of triangular elements helped us to prove the effectiveness
of the methods chosen to analyze semiconductor devices correctly. Faster and more accurate
results have been obtained by using non-uniform mesh with respect to denser uniform mesh.
Parallelization in simulator has also been achieved during the assembly process of DG-FEM
while constructing a global matrix from discrete element equations. OpenMP directives have
been used for parallelization and a speedup of 1.4x has been obtained by using Dell Precision
T7610 having QuadCore processor and 16GB RAM. Future work on the parallelizing of solution
of global matrix would improve the performance of our proposed device simulator. To showcase
the effectiveness of proposed simulator, results for a PN junction diode are validated with TCAD
device simulator Sentaurus [10] and presented as follows.

4.1. PN Junction Diode
Different parameters used to simulate a silicon based PN junction diode are shown in Table 2.

Table 2. Various device parameters used for a PN diode.

Parameters Value

Length of P-region 30 pum

Length of N-region 70 pm

Doping Profile: N,, N; 10'6 ¢m™3

Hole Mobility: 480 em?/V — s
Electron Mobility: p, 1350 cm?/V — s
Temperature: T 300 K

Figure 6 and Figure 7 shows the formation of uniform and non-uniform mesh for a PN junction
diode respectively. Denser mesh near the junction is created in order to achieve higher accuracy.
Potential profile inside a diode at thermal equilibrium is shown in Figure 8. Built-in potential
of a PN junction diode is found to be approximately 0.67V. Total current density for a forward
bias voltage is as shown in Figure 9. Our simulator also supports complex geometries (FinFET,
GAAFET) and the analysis of these devices with a detailed study of physical phenomenon will
be presented in our future manuscripts.
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Figure 6. Uniform mesh over PN junction Figure 7. Non-uniform mesh over PN
diode. junction diode.

I-V characteristics of a PN Diode
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Figure 8. Potential profile of a 2D PN Figure 9. Forward biased current-voltage
junction diode at equilibrium. characteristics of a PN junction diode.

5. Conclusion

A parallelized and accurate DG based two-dimensional device simulator is presented in this
paper to simulate semiconductor devices. Process flow of a typical device simulator and various
discretization schemes to obtained the numerical solution of a device physics models has been
discussed. The proposed framework uses discontinuous Galerkin finite element method to
discretize PDEs of Drift-Diffusion model. DG method provides high parallelizability, easy handle
of complex geometries, non-linear stability and higher order accuracy as compared to other
discretization schemes. To achieve faster and accurate results, it is imperative to take advantage
of current manycore computing architecture. Parallelization in the framework is achieved using
OpenMP to produce 1.4z faster results as compared to serial computation. Simulation results
for a PN diode has been presented to showcase the effectiveness of proposed framework.
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