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Abstract. As the exascale computing age emerges, data related issues are becoming critical 

factors that determine how and where we do computing. Popular approaches used by 

traditional I/O solution and storage libraries become increasingly bottlenecked due to their 

assumptions about data movement, re-organization, and storage. While, new technologies, such 

as ―burst buffers‖, can help address some of the short-term performance issues, it is essential 

that we reexamine the underlying storage and I/O infrastructure to effectively support 

requirements and challenges at exascale and beyond. In this paper we present a new approach 

to the exascale Storage System and I/O (SSIO), which is based on allowing users to inject 

application knowledge into the system and leverage this knowledge to better manage, store, 

and access large data volumes so as to minimize the time to scientific insights. Central to our 

approach is the distinction between the data, metadata, and the knowledge contained therein, 

transferred from the user to the system by describing ―utility‖ of data as it ages. 

1.  Introduction 

The purpose of computing is insight, not numbers [1], a remark Richard Hamming made over 50 years 

ago at the dawning of the age of large scale scientific computing. The central objective of our next-

generation storage and I/O system (Sirius) is to minimize the time to insight with respect to scientific 

computing at extreme scales. This means that we need new research into managing, storing, and 

retrieving the large data volumes produced by simulations, and analyzed for months afterwards. 
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To begin, we present an example to illustrate these challenges and to motivate the on-going work. 

Next we describe our guiding principles to help tackle these challenges. In the subsequent sections we 

describe the key applied mathematics and computer science research components of SIRIUS. Here we 

introduce a new approach, data refactoring using an auditor, to aid in the separation of information 

from data. Finally, we describe the key challenges when this approach is realized, along with the 

future obstacle to manage the data lifecycle at extreme scales.  

1.1.  Illustrative Example 

Our motivating use case is a series of simulations of the ITER fusion experiments using the XGC1 [2] 

application. XGC1 is one of the largest applications used at the Department of Energy's (DOE's) 

Leadership Class Facilities with an allocation of over 300M hours in 2015. These simulations were 

scheduled to produce 100 PB of data over ten days of total runtime on the Titan system at the Oak 

Ridge Leadership Computing Facility (OLCF) and required a team of experts, including the user 

group and I/O and storage personnel, to help ensure that the maximum amount of information would 

be saved. Due to physical resource limitations, the simulation was immediately restricted to write 

about 10 PB. However, when the time to write and read, together with the financial cost to archive this 

volume of data was fully explored, the data size goal was further reduced to only 5 PB total. 

This forced a careful scrutiny of the data to be generated and restriction of the output to only the 

most important pieces. Further, this reduced data set had to be divided into two categories: the data 

that would be accessed while the simulation was running or shortly thereafter and the data that would 

be needed after the whole campaign was finished. The former category of data would be stored on disk 

and the latter would be archived. Additionally, the entire team needed to figure out how to efficiently 

retrieve these different categories of data for post-processing analysis and visualization. 

To accomplish this, the application and storage teams developed new application specific data 

reduction techniques and added them to the ADIOS [3] I/O middleware layer. A rudimentary 

discovery system was also created to track what data was on disk and what was on tape. Initially this 

solution was sufficient, but eventually a new problem was discovered. Although the team had reserved 

compute resources for the run, the entire file system was shared, resulting in very high I/O variability. 

Addressing this variability, caused by contention on shared resources, is an ongoing concern. Earlier 

efforts [4] were insufficient due to the immense data volumes, limited time available, and the number 

of current users. 

The problems faced by this user workflow motivate our research here. The use case demonstrated 

that three tiers of solutions are required: application level knowledge of data and how it will be used, 

middleware management of data and resources, and storage system level scheduling of resources. It 

also provided us with new insights. First, the users and developers of the application data can, without 

a great loss of encoded knowledge, reduce the size of data that needs to be stored. Second, data storage 

must be managed with input from the users to correctly decide the target of storage operations. Third, 

shared resources must be managed in a way that provides sufficient performance to all applications 

without encumbering the applications with high variability in performance. These insights drive the 

SIRIUS project and its research components.  

1.2.  Guiding principles of SIRIUS 

The exascale storage system and I/O (SSIO) community must overcome the challenges described 

above for both the application scientist trying to write data and those trying to read data. This must be 

done such that the SSIO system can fairly share the resources among the users while helping enable 

exascale science by prioritizing and understanding the application level data requirements. The 

SIRIUS project is ultimately guided by two basic principles: 

Principle 1: A knowledge-centric system design that allows user knowledge to define data 

policies. Today, SSIO layers are written in a stovepipe fashion and quite often do not allow 

optimizations. We are re-designing the layers in a highly integrated fashion where users express their 
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intentions into the system and actions will statically and dynamically optimize for both the system and 

for individual requests. 

Principle 2: Predictable performance and data quality in the SSIO layers need to be 

established to maximize the information (rather than raw data) generated on the exascale systems. 

Without predictable performance, runs may be slowed down because of shared resource contention, 

which can affect key science decisions, e.g., how much data reduction should be performed. To have 

some confidence that sufficient output time is available, a conservative estimate, rather than nearly 

accurate, can be used. 

ADIOS can alleviate the need for ―magic‖ and ―tricks‖ to optimize application I/O performance on 

today's file systems by placing extra annotations in the metadata to better understand the underlying 

storage system [3]. In SIRIUS, we are extending this by providing a systematic autonomic approach 

for combining intentions and other knowledge from the user with performance estimations and 

guarantees from the underlying storage. By capturing user intentions and acting upon them in the 

middleware, we free the user from polluting application code with system specific optimizations. 

These techniques will be further integrated in combing ADIOS with an object store like RADOS-Ceph 

[5], which is a distributed object store and file system. Ceph offers both a POSIX and object interface 

including features typically found in parallel file systems.  

2.  Data Refactoring 

The classical workflow where the entire dataset is written to storage for later analysis will no longer be 

viable at exascale simply because the amount of generated data will be too large due to capacity and 

performance limitations. In the future, it will be vital to take advantage of a priori information (1) to 

gain higher performance and predictability of I/O, (2) to prioritize the most useful data for end users so 

that I/O can be finished under time constraints, and (3) to perform in situ operations and analysis 

before storing the information. A result of these requirements is a need for a set of techniques to 

reduce and restructure data, here referred to as data refactoring. 

The fusion use case described earlier shares commonalities with many other DOE applications. A 

priori information can be provided by application scientists regarding which data should be sent to the 

storage system (e.g., SIRIUS) so that minimally, the most science relevant data can be available for 

subsequent analysis. This allows science goals to be accomplished even when the storage is busy 

servicing other users. As we discussed earlier, this shared resource contention is common and causes 

high performance variability. For our approach, data refactoring generates the data prioritization 

classes. This refactoring includes data re-organization and reductions. There are many data refactoring 

techniques and the best choice will generally be application dependent. However, our observation is 

that, once the choice is settled for an application, it will not typically change from run to run within an 

extended campaign. 

One research challenge in effectively and efficiently refactoring data is understanding when the 

time and resources required to identify and execute the ―best methods‖ exceeds the gains achieved. 

Another critical research question concerns quantifying and controlling information loss from 

refactoring the data and using a reduced dataset. Broadly speaking, the path from data to knowledge 

consists of extracting underlying models or patterns from the datasets and interpreting the resulting 

models. Although scientific data generally contains random components due to finite precision and 

measurement and calibration effects, useful scientific data is never purely random. As such, a core 

concern in refactoring is understanding how much information is present in a dataset and therefore 

which type(s) of refactoring will be the most effective. 

Ideally, scientists would like to perform the entire analysis in situ, effectively circumventing the 

large data issue completely. The catch, of course, is that this is unlikely to be possible since, by their 

nature, large-scale simulations aim to discover new information often hidden in the form of higher 

order effects amongst the data deluge. In particular, this means if data thinning or truncation is applied 

haphazardly, the higher order effects may be eliminated.  
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Typically, entire data sets cannot be stored in easily accessible storage due to its sheer size. Yet, the 

data cannot be reduced prior to archiving without risking losing information. Viewed in this way, the 

problem would appear intractable. As noted above, though, this is not a true impediment as long as we 

can incorporate a user’s a priori knowledge of models and effective refactoring techniques. The 

information needed to answer the scientist’s particular science goals is frequently significantly 

smaller, and using careful information-theoretic and application-given techniques, the SSIO layer can 

exploit this.  

Deep application knowledge means one can sometimes achieve dramatically superior data 

reduction compared with what one might achieve otherwise. However, even in the absence of such 

high level knowledge, SIRIUS must offer generic data reduction and re-organization techniques. For 

instance, certain basic data semantics information is needed and must be supported by the overall 

infrastructure. Currently we are studying three generic and one application specific refactoring 

methods: (1) Precision based, (2) Frequency-based, (3) Linear Auditing, and (4) Application aware 

histogramming. Each of these is described below. 

Precision based refactoring groups together the most significant data bits of the binary 

representation of each object. This data generally has a higher ―utility‖ than data with the least 

significant bits, and contains less entropy. This technique can involve memory intensive operations, 

and as such, great care must be taken to balance the CPU, memory, and storage bandwidth costs and 

savings. Reading this data back introduces additional challenges—hot to find the separated 

components of the data if full resolution is needed and how to reconstruct the ―packed‖ data to a form 

the user can work with.  

Multi-resolution refactoring separates a dataset using variable granularities, or resolutions. 

Higher granularity samples are subtracted from lower granularity ones. This technique is commonly 

used in streaming data using techniques such as JPEG-2000 [6]. These mechanisms support spatial 

random access or region of interest access at varying degrees of granularity. In relation to this project, 

this capability allows us to place the lowest granularity chunks in the fastest storage and the highest 

granularity chunks can either be written to slower tiers or not written at all. In order to fully take 

advantage of multi-resolution re-organization, techniques to pre-condition the data can be used to 

further optimize this process. This technique can be applied together with Precision-based refactoring 

methods as the pre-conditioner. 

Linear Reconstruction is a ―technique‖ for reducing data consists of storing every s data item and 

simply ignoring the rest of the data. This approach is frequently adopted as a simple, but often 

effective method for data reduction. The tactic assumption underlying the approach is that the 

discarded values could, if required, be reconstructed by interpolating the retained values. More 

generally, one can retain every s-th item of data, where s is a chosen stride length resulting in an s-fold 

reduction in the size of the data. Objections to this and related ad hoc procedures are their lossy nature 

and lack of a sound theoretical basis. In order to address the lossy nature, we are using the linear 

reconstruction procedure described above as a predictor for the discarded items of data. The 

difference, or deltas, between the actual value of the discarded item can be shown, under reasonable 

assumptions, to have a significantly lower entropy than the original data. This means that the deltas are 

amenable to compression using, for instance, a standard arithmetic encoder. The resulting procedure 

then becomes lossless. The process of reinstating the data consists of identifying the stored values at 

the adjacent strides s, performing linear interpolation to obtain a predicted value, using the predicted 

value as key to access the delta correction from the arithmetic encoder, and finally, summing the 

predicted and delta corrector to obtain the original data item.  

The resulting procedure can be surprisingly effective. Figure 1 shows the results obtained for 

varying choices of stride length s for the storage of data sampled from the function sin(x) exp(20x), 

0<x<1 at uniformly spaced points. The compression ratio is computed by comparing the number of 

bits that would be required to store the original, full data set with the number of bits required to store 

the compressed data set including the costs (and overhead) associated with the arithmetic encoder. 
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Figure 1. Compression ratio obtained using linear reconstruction for different choices of string length 

s. 

 

Remarkably, the optimal choice for the stride s is considerably larger than the choice s=10 often used 

in practice despite the fact that the underlying data has a variation of several orders of magnitude 

across the sampling range.  

Application Aware Auditor contains a class of techniques which have more domain knowledge 

than the generic techniques described above. In our example, physicist’s understands that the particle 

distribution closely follows a Maxwellian distribution [7]. By using methods borrowed from 

perturbation theory
10

 we can remove the background Maxwellian distribution and then store only the 

reduced non-Maxwellian piece of the distribution function. Physically, this should have a much 

smaller dynamic range. In our example we applied this technique using a two dimensional histogram 

of the particles in velocity space, and were able to get a dramatic reduction of the data to be saved 

using this lossy technique. This technique can be further combined with our other refactoring 

techniques to further reduce the potential storage cost of the information. 

3.  Refactoring Challenges 

Refactoring large volumes of data is a challenging computing problem with three broad challenges. (1) 

Large volumes of data need to be refactored with minimal impact on the application and the 

computational resources. (2) The refactored data has to be created in a manner consistent with the 

access patterns of the data consumer. This requires predicting the common access patterns for data 

sets, identifying the most likely patterns and then correctly selecting the appropriate refactoring code 

path. (3) The abstraction through which data is viewed by the user needs to be consistent in the 

presence of changing refactoring techniques (in order to minimize the cognitive burden on the user), 

while providing sufficient transparency to enable both user and system to optimize metrics such as 

data layout, data accuracy and predictable performance. Next we describe these broad areas in detail 

and elaborate our approach for addressing these key challenges.   

3.1.  Resource Utilization 

The generation of large volumes of data, is a costly and resource intensive apparatus. Additional work 

required by data refactoring can only be justified if the benefits outweigh the costs, and if the overall 

impact on the performance of the data pipeline is positive. Thus, any additional task to refactor, 

                                                      
10

 See e.g. https://en.wikipedia.org/wiki/Perturbation_theory 
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reorganize or compress data will need to account positively for the consumption of resources. In 

particular, there are three resources that are critical to scientific big data pipelines, on board system 

memory, additional time on the processor, and bandwidth consumed for data movement. 

If we consider memory as the first constraint, data refactoring requires maintaining an original 

baseline state in memory, while generating the pieces to represent the refactored state. In the precision 

based refactoring technique, the original data is kept in memory while tiered precision arrays are 

generated. This requires that we double the memory requirement, and in some, very memory 

constrained use cases, this might render the refactoring an unviable approach. To overcome this 

obstacle, we have developed a method to refactor data streams by utilizing temporary windows over a 

stream of data. This windowed approach limits the additional memory overhead, but incurs a 

performance penalty when outputting data. Thus, we are studying optimal window sizes for the 

different refactoring techniques we have described earlier. 

Similarly, for CPU and bandwidth consumption, the consumed resources will have an impact on 

the performance of the application. Some of this can be mitigated by utilizing asynchronous methods 

to compute and move the refactored data. This will require careful management of when the 

refactoring computation is called, and when data is moved, to minimize the overhead on the 

application due to resource contention. Here we are extending our past work on contention avoidance 

for data movement and resource sharing [8]. 

3.2.  Refactoring Selection 

There exist multiple techniques to refactor data that provide a varying set of tradeoffs between data 

output and access times, storage utilization, and accuracy of results. The selection of the refactoring 

technique becomes particularly challenging due to two factors. First, the requirements from the users 

evolve over periods of time, as the importance and utility of data change. Secondly, refactoring 

techniques can be used in combination, in any non-specific order. 

Appropriately selecting the set and ordering of refactoring methods will require evaluations of the 

strengths of each combination within specific user constraints. The combination of user needs and data 

characteristics will require an autonomic controller to select the refactoring method. For example, a 

delta compression such as using the Linear Auditor will benefit greatly from an initial refactoring into 

multiple precision bins (since minor noise in the bins for higher order bits will be smoothed out). 

However, if the user requirement is that all data must be accessed at maximum precision, the 

additional work for precision based refactoring is unnecessary. 

3.3.  Linked Data Abstraction 

Separate from the resource and performance impact of refactoring on the data intensive application, is 

the increased complexity of the organization and structure of the stored data. To be able to provide 

users with a compelling case for adopting this approach, a succinct data abstraction is required. This 

data abstraction must be able to provide a coherent view of discrete blocks of data, with each block 

having passed through multiple refactoring functions. Moreover, as the system makes decision on 

moving the various blocks based on importance and utility, the abstraction must be able to encapsulate 

the location of the blocks and allow a common API to access the data transparently. We are building 

this abstraction on the current ADIOS data abstraction which creates separate blocks for each process 

in a parallel cohort. We will extend this with deep links and attributes that describe the type and 

parameters of the refactoring operation. Achieving this combination of transparent data access with a 

performant middleware system will be one of the key challenges that will need to be solved to provide 

a usable data platform for exascale applications. 

4.  Managing Data Lifecycle 

SIRIUS aims to manage the overall data life cycle, including data generation (e.g., from a simulation) 

or acquisition (e.g., in the case of experimental and observational data), optimized data placement, 

runtime data management including migration, reorganization and reduction, data consumption for 
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knowledge discovery, and purging data from the system to optimize system operation. Key research 

questions addressed by SIRIUS include: (1) How can we initially place data so that it can be 

discovered and consumed efficiently? (2) How can the placement and migration of data across a multi-

tiered storage hierarchy be optimized at runtime, both from the application and system perspective? 

(3) How can knowledge about the application used to better prepare the data for consumption? (4) 

When and how do we make the decision to purge data?  

Data placement and movement: When an application outputs or accesses data, the storage and 

middleware layers needs to decide what data is placed where in the multi-level storage system. This 

placement decision can have a significant impact on data management throughout the lifetime of the 

data. For example, our past work on data–staging [[9],[10] on HPC systems with multi-level memory 

structures has shown that different output techniques targeting different layers of the storage hierarchy 

can have a significant impact on the overhead observed by the application for I/O operations. A key 

requirement is application-driven runtime mechanisms for dynamically managing data placement 

across the layers of the distributed storage hierarchy throughout the data lifecycle, coordinating data 

movement and data sharing between the components of the application workflow, with the 

overarching goal of maximizing the relative utility to the application as well as the system while 

reducing access costs. As noted before, the complexities of heterogeneous multi-level storage 

structures require adaptive placement policies are required to be implemented to optimally utilize 

storage resources vertically (across deep memory hierarchies) and horizontally (across nodes within a 

memory level) while accommodating dynamic application requirements and transient system states. 

Our approach is to increase knowledge about the data and its use within the application and leverage 

this knowledge to drive data placement and overall management.  

Soliciting application hints: As described in the previous section, one of the main components of 

our proposed storage system is the ability to reorganize, refactor, and reduce data as it is generated and 

to reorganize and possibly regenerate the data as it is accessed. We carry this principle into the 

placement and movement of data by allowing applications to define hints and policies that guide what 

data is placed where. We will explore the use of application hints in two distinct areas. First, we will 

study the challenges and trade-offs of either augmenting the I/O interface with hints or allowing the 

addition of an external specification that defines the use case. Our experience with developing modern 

I/O interfaces has shown that both techniques have value [9] and we will investigate the set of hints 

that are embedded in the application code vs. those that are described within a non-compiled 

specification. Second, we will study how hints can guide data placement as data is handed off from 

application to storage (during a write) and from storage to application (during the read). In both cases 

we will study what minimal set of annotations and hints can allow the storage system to minimize data 

movement and optimize the resources consumed by I/O. 

5.  Metadata Challenges 

The challenge when applying refactoring techniques, particularly application aware techniques, is how 

to incorporate sufficient knowledge in the storage system such that an arbitrary future client has 

sufficient information to recreate the desired information. Additionally, by spreading data across 

multiple different kinds of storage media that typically have independent namespaces, locating any 

particular data will be challenging. 

SIRIUS will provide sufficient built-in and extensible metadata services to support efficient data 

access. First, detailed data metadata, such as array dimensions and other similar data, must be visible 

within the metadata for any effective data selection. Second, each data chunk stored within the storage 

hierarchy must have some way to address it. As data utility forces data migration within SIRIUS, the 

metadata must either dynamically track data as it moves or offer a search feature to discover where 

data currently resides. Which approach is superior and under what conditions still needs to be 

determined through further research. 

 

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012095 doi:10.1088/1742-6596/759/1/012095

7



 

 

 

 

 

 

6.  Conclusion 

Extreme scale application workflows, such as the fusion workflow described in this paper, generate 

very large amounts of data that need to be processed and analyzed before potential insights from the 

simulations can be realized. Managing, storing and retrieving these large volumes of data have become 

critical challenges. The central objective of the SIRIUS project is to address these challenges and 

minimize the time to insight for scientific workflows at extreme scales by enabling predictable 

performance across the storage system. We are creating a new understanding of how users can 

describe their intentions by describing the data utility, and refactor their data to achieve faster storage, 

retrieval, and understanding of the information contained in the data. 
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