XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012089 doi:10.1088/1742-6596/759/1/012089

Open Source Computing in Physics Education

Ananda Dasgupta
Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, India -
741252

E-mail: adg@iiserkol.ac.in

1. Introduction

No one can deny that computers are important tools for a physicist. The aspect that we are
most familiar with is that they are great for solving research problems! What is not so widely
appreciated is that they are also great as teaching tools. They are grossly underused in this
aspect. In this talk, I will try to demonstrate how an instructor can make use of the computer
to make her course both more attractive and effective . The focus of the lecture was on three
aspects

e writing your own animations for physics teaching.
e teaching students to explore physics through computing.

e using open source software for simple experiments.

For the sake of brevity, I will discuss only the first one in this article. In this, I will assume a
reasonable amount of computational skill on the part of the instructor. However, one does not
have to be an expert in computational physics in order to make use of the methods described
here.

2. Animations as a teaching tool

All teachers will agree that animations can be very useful for improving student comprehension
of complicated topics. They can serve as complements for traditional laboratory experiments,
as well as aids for thought experiments allowing students to explore parameter regimes that
might to too tedious or too expensive otherwise. Given their potential, it is natural that a lot of
work has already been done on this topic. A huge repository of animations dealing with various
aspects of physics are already available. This includes java applets, shockwave animations,
vpython animations and a lot, lot more. Some of these are commercial, while a lot is available
for free on the internet. It needs to be stressed that some of the free software is of extremely
high quality - often they are superior to their commercial counterparts.

Despite the easy availability of commercial and non-commercial software there are several
stumbling blocks on the road to adapting the available ones for the classroom. Even if you
manage to find one that deals with the subject at hand, the available software may not be
exactly suitable for the purpose at hand. At the very least, you may want to use other values
for the parameters which are hard-coded. What’s even more likely is that the software may not
deal with the exact aspect of the problem that you want to explore. The best solution to this
problem is to write your own animations!

This solution comes with its own set of problems though. After all, it takes time and effort
to learn a programming language! Given the busy schedule most educators have it would be

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012089 doi:10.1088/1742-6596/759/1/012089

too much to expect this from them. Even if one is used to programming for solving research
problems it takes a lot of time and effort to write animations. A way forward that I propose
here is to make use of the animation capabilities built into gnuplot.

3. Gnuplot

There are several reason why we recommend gnuplot. To begin with, the best reason is that it
is open source. It is available free of cost - this may be an important consideration for many
of us. Given the wide variety of operating systems that are in use, another plus point is that
versions of gnuplot is available for most of them. The most important consideration is that it is
relatively easy to create high quality plots using this software and what’s even more important
for the present discussion - animations are also easy to create!

3.1. Plotting with gnuplot
By default, gnuplot is used for creating 2D and 3D plots. For example, the command
plot sin(x)
produces the following graph

1] Gnuplot (window i) 0]} EEE
h Rxr@aaeaq » ?

1

0.8

06

0.4

0.2

L]

-0.2

-0.4

-0.6

0.750860, -0.945517

As you can see, by default gnuplot takes the independent variable to run from -10 to +10.
This and many other aspects can be customized. For details, please refer to the gnuplot
documentation.

We will be more interested in gnuplot scripts. At the most basic level, a script is nothing but
a sequence of gnuplot commands written in a file. for example, consider a file with the following
lines

set sample 1000

plot sin(x)

pause 3

plot sin(x) + sin(3xx)/3

pause 3

plot sin(x) + sin(3*x)/3 + sin(5%*x)/5
pause -1

will display the graphs shown below

Lt

!

B el - eE0 = o =]
c cwa@aq a? & ewaaa d?

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012089 doi:10.1088/1742-6596/759/1/012089

after intervals of 3 seconds (that’s what the ‘pause 3’ are for). By default gnuplot plots a curve by
plotting 100 equally spaced points. The first line in the script changes this number of points to
1000 - leading to a smoother curve. The final pause -1 keeps the pauses the program indefinitely
(that is until the user hits a key) so that the picture persists on the screen.

3.2. The reread command

When gnuplot encounters the reread command in a script it loads the script again. This is the
basic step that allows us to write animations in gnuplot. To see how this works take a look at
the script ‘easyWave.plt’ containing the following

file ‘easyWave.plt’
Plots a running wave

plot sin(x-ct)
pause sp
ct = ct + sp
if (ct<5) reread
To run this script open the gnuplot interpreter and enter the commands

ct =20
sp = 0.05
load ’easy Wave.plt’

and you will see a wave running across your screen.

If you want to run the script directly without opening the interpreter, you must put the
three lines above in another script initWave.plt . Running this script by typing gnuplot
initWave.plt at the command line (for linux) or double-clicking the icon (in Windows) will
give you the running wave.

3.3. More complex examples - Fourier series again
The Fourier series for the square wave

isin [(20 4+ 1)z]
= 2i+1

leads to the partial sums
n

sq,. () = A sin[(2i 4 1)x]

2i+1

~
Il
o

which obey
sin[(2n + 1)z]
2n+1

We can use this recursively, along with sqq(x) = sin(z), to calculate sq, ()
To create an animation that will show the partial fourier sums for the square wave in
succession, we need the initialization script initFourier.plt :

Sqn(‘r) = Sqn—l(‘r) +

initFourier.plt
Fourier series for the square wave

sq(x,n) = n == 07 sin(x):sin((2*n+1)*x)/(2*n+1)+sq(x,n-1)

XXVII IUPAP Conference on Computational Physics (CCP2015) IOP Publishing
Journal of Physics: Conference Series 759 (2016) 012089 doi:10.1088/1742-6596/759/1/012089

set sample 1000

n=20
load ‘Fourier.plt’

and the main script Fourier.plt

t = sprintf(‘Fourier Series summed to %d terms’,n+1)
set title t font ‘Helvetica,16’

p [-10:10] [-1.5:1.5] 4/pi*sq(x,n) t ‘square’
n = n+l
pause -1 "Hit enter to continue"

if (n<10) reread
pause -1 "Hit enter to quit"}

Running this script by typing

gnuplot initFourier.plt will result in the display of the first ten partial sums of the
Fourier expansion of a square wave, with gnuplot waiting each time before moving on to the
next graph for the user to strike a key.

4. Conclusion
In conclusion let me emphasize that it is quite easy to master the art of creating high quality,
flexible animations using gnuplot, which can go a long way towards aiding the teaching-learning

process.
[1] The gnuplot website hittp://www.gnuplot.info.

