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Abstract. We study the effects of disorder on the spin dependent interaction term of a spinor
Bose Hubbard model with a three body interaction potential. The signature of the Bose glass
(BG) phase is observed by computing the fraction of the lattice sites having finite superfluid
(SF) order parameter and non integer occupation densities. We obtain the phase diagram both
for the antiferromagnetic (AF) and ferromagnetic (F) cases via a percolation analysis. In the AF
case, the BG phase intervenes between the odd-even Mott insulating (MI) lobes (for example,
the lobes corresponding to occupation densities, n=1 and (n=2) but not between the even-odd
MI lobes. In the ferromagnetic case, the presence of the BG phase is observed between all the
MI lobes irrespective of them being even or odd. The BG phase almost destroys the first MI
lobe while the MI phase looks more stable than the SF phase both in the AF and F cases due
to the presence of the three body interactions.

1. Introduction

Ultracold atoms trapped in optical lattices offer a novel platform to explore the quantum
phenomena where quantum fluctuations are responsible for phase transition from one
macroscopic phase to another one. In magnetic trapping, ultracold atoms freeze their internal
degrees of freedom and thereby behaves like scalar or spin-0 Bose gas while in optical trapping,
they retains their spin degrees of freedom and show spinor like behaviour [1].

The properties of cold atoms in optical lattices first theoretically described by the well known
Bose Hubbard model (BHM) developed by Jaksch et. al. [2] where the phase transition is entirely
determined between the competition in tunneling and two body interaction strengths. Following
the proposal by Jaksch et. al., Greiner et. al. [3] first experimentally realized the superfluid (SF)
to Mott insulator (MI) transition of bosonic cold atoms loaded in optical lattices.

Several progress have been made to study the scalar or spinor Bose gas with different
extensions of BHM in both homogeneous and inhomogeneous case from theoretical as well as
experimental point view. Among them, one possible extension of the BHM include the study
of three body interactions [4–7] on the SF to MI transition gained much attention after the
successful experimental realization of three and higher body interaction strengths by Will et.
al. [8].

In this work, we will study the effect of three body repulsive interaction strengths on spinor
ultracold Bose gas in presence of disorder through mean field approach (MFA) [9] where an
additional glassy type of phase known as Bose glass (BG) phase [10–12,14] intervene in between
SF and MI due to the presence of disorder. Since MFA is quite inadequate to overcome the
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site dependencies in the Hamiltonian, numerical approach like quantum Monte Carlo (QMC)
[10], stochastic mean field theory (SMFT) [11], probabilistic mean field perturbative (PMFA)
approach [12,13] and strong coupling expansion [14] have been developed to study the BHM in
presence of disorder.

Following the approach developed in [15], here we use the MFA to study the disordered BHM
and define a new quantity which is the fraction of lattice sites having finite SF order parameter
to remove the inhomogenities in the Hamiltonian and did a percolation analysis to find the
extent of the different phases based on the appearance of SF percolating cluster.

2. Spinor Bose Hubbard Hamiltonian

The Bose Hubbard Hamiltonian (BHM) for spin-1 ultracold atoms in presence of random
disorder with three body interaction term is [4–6,16],

Ĥ = − t
∑

<i,j>

∑

σ

(â†iσâiσ + h.c) − µ
∑

i

n̂i +
U0

2

∑

i

n̂i(n̂i − 1)

+
W

6

∑

i

n̂i(n̂i − 1)(n̂i − 2) +
∑

i

1

2
(U2 + ǫi)(S

2
i − 2n̂i)] (1)

where t is the tunneling amplitude and µ is the chemical potential. â†iσ(âiσ) is the boson
creation (annihilation) operator at a site i with hyperfine spin state σ =+1, 0, -1 and the

particle number operator is n̂i =
∑

σ â
†
iσâiσ. The hyperfine spin operator at site i is given

by Si = â†iσFσσ′ âiσ′ where Fσσ′ are the components of spin-1 matrices. W represents the
three body interaction strength and U0 and U2 are spin independent and dependent two body
interaction strengths respectively. U0 and U2 are related to the scattering lengths, a0 and a2
as U2/U0 = (a2 − a0)/(a0 + 2a2) and is called antiferromagnetic (AF) interaction if U2/U0 > 0
and ferromagnetic (F) if U2/U0 ≤ 0. ǫi is the on-site disorder is introduced at site i, which is
randomly chosen from a box distribution in the interval [−∆,∆] where ∆ is the strength of the
disorder. To decouple the hopping part in Eq.(1), we shall use mean field approximation as [17]

â†iσâjσ ≃ 〈â†iσ〉âjσ + â†iσ〈âjσ〉 − 〈â†iσ〉〈âjσ〉 (2)

where 〈 〉 denotes the equilibrium value of an operator. Now defining the superfluid order

parameter at a site i as, ψiσ ≡ 〈â†iσ〉 ≡ 〈âiσ〉 and ψi =
√

ψ2
iσ, the BHM can be written as a sum

of single site Hamiltonians as, H =
∑

iH
MF
i where

HMF
i = − t

∑

σ

(φ∗iσ âiσ + φiσâ
†
iσ) + t

∑

σ

φ∗iσψiσ − µn̂i +
U0

2
n̂i(n̂i − 1)

+
W

6
n̂i(n̂i − 1)(n̂i − 2) +

1

2
(U2 + ǫi)(S

2
i − 2n̂i) (3)

where φiσ =
∑

j ψjσ, j includes all nearest neighbors at the site i of a square lattice with z = 4,
z being the coordination number. The local density, ρi and compressibility, κi can also be
computed using,

ρi = 〈ψeq
i |n̂iσ|ψ

eq
i 〉; κ2i = 〈ρ2i 〉 − 〈ρi〉

2 (4)

where ψeq
i is the equilibrium value of ψi after self consistent ground state is obtained.
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Figure 1. (Color online) The SF order parameter ψ̄ (a) and κ̄ (b) with ∆/U0 for U2/U0 = 0.1
(AF) and W/U0 = 0.5.

3. Results

In order to see the effect of disorder and three body interaction term, first we consider the atomic
limit i.e t = 0. In the atomic limit t = 0, system will consist only the Mott insulating (MI)
phase where there is a gap in the particle hole excitation spectrum. The energy gap, Eg for a
particular filling of the MI lobe n corresponds to the upper and lower boundaries of the MI region
as µ−(n) < µ < µ+(n) [12]. In the AF case, this inequality leads to the following equations
corresponding to the even MI lobes as (n−1)− 2U2

U0
+ W

2U0
(n−1)(n−2) < µ/U0 < n+ W

2U0
n(n−1)

and for odd MI lobes as (n− 1)+ W
2U0

(n− 1)(n− 2) < µ/U0 < n− 2U2

U0
+ W

2U0
n(n− 1) and also in

the ferromagnetic case, (n− 1)(1 + U2

U0
) + W

2U0
(n− 1)(n− 2) < µ/U0 < n(1 + U2

U0
) + W

2U0
n(n− 1)

and shown in Fig.3(a). It shows that both in the AF and F cases, the chemical potential width
µ increases due to W/U0 which suggests that the MI lobes becomes more stable compared to
the SF phase. Interestingly the critical value of U2 for the disappearance of the odd MI lobes in
the AF case now depends on the three body interaction strengths which was 0.5 without W/U0.
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Figure 2. (Color online) The ψ̄ (a) and κ̄ (b) with ∆/U0 for U2/U0 = −0.2 (F) andW/U0 = 0.7.

We now turn on the disorder and diagonalize the mean field Hamiltonian on a 2D square lattice of
size L = 30 self consistently to find the ground state energy and the equilibrium order parameter
ψeq
i and ψ̄ = 1

L2

∑

i ψ
eq
i and the compressibility κ̄ = 1

L2

∑

i κi which are shown in Figs.1 and 2.

In a disorder free scenario, the SF order parameter ψ̄ and compressibility κ̄ change from zero to
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Figure 3. (Color online) MI phase in atomic limit t = 0 for W/U0 = 0.5 (a). The variation of
χ with ∆/U0 in U2 for U2/U0 = 0.1 and W/U0 = 0.5 in (b).

finite value indicating direct MI to SF phase transition [Figs.1 and 2]. The transition point for
the MI-SF phase increases with W/U0 since it pushes the system towards the insulating regime.
As disorder is introduced, the BG phase appears in between the MI and the SF phase which
is characterized by zero SF order parameter but finite compressibility. In the AF case, no BG
phase occurs between the even (ρ = 2, 4..) and odd (ρ = 1, 3..) MI lobes [Figs.1(a),(b)(MI(2))]
while for the odd and even MI lobes, the BG phase appears[Figs.1(a),(b)(MI(1))]. In the atomic
limit, t = 0 for AF case, the chemical potential width µ for the even-odd transition is parallel
to U2 axis while for odd-even transition, it depends upon U2 and disorder in U2 will change the
chemical potential width and hence the MI lobes [Fig.3 (a)]. In F case, the BG phase intervenes
in all the MI lobes since disorder in U2 will affect the occupation densities [Figs.2 (a),(b)].

From the above discussion, although we have been able to identify the BG phase but in order
to get a clear understanding, we have to determine the boundaries of these three phases and
hence the phase diagram in presence of disorder. In MFA, all SF parameter varies randomly
due to disorder, thus it is quite difficult to determine the location of different phases and hence
the phase diagrams based on the average ψ̄ and κ̄.

To remove the inhomegenities in the Hamiltonian, we define a new quantity, called χ as,

χ =
sites with ψi 6= 0 and ρi 6= integer

total numbers of sites
(5)

The variation of χ for AF case is shown in Fig.3(b). It shows that χ switches from 0 to 1
indicating a direct MI to SF phase transition in clean state while in presence of disorder, there
is gradual increase in slope due to the intervening BG phase in between MI and SF phases.

Interestingly in AF case, χ only assumes 0 and 1 values corresponding to even-odd MI
transition in both clean and disordered cases leaving the signature of BG phase [Fig.3(b)(MI(2))].
While for the odd-even transition χ shows a gradual increase between 0 and 1, indicating the
intervention of BG phase in between MI and SF phases as discussed earlier [Fig.3(b)(MI(1))].
In F, χ takes all finite values signaling the appearance of BG phase for all MI lobes and shows
similar properties if disorder is present in µ.

From the variation of χ, it is now quite clear that χ = 0 corresponds to MI and χ = 1
corresponds to SF phase but we have to determine if there is any critical value of χ i.e χc

below which the system is in BG phase above which it belongs to SF phase for 0 < χ < 1
region [Fig.3(b)]. To answer the above concern, we will follow the percolation analysis to know
if there is any SF percolating cluster exists. We have characterized the three phases based on
the appearances of SF percolating cluster [15]. A SF percolating cluster means cluster of sites
with non integer densities connected with their nearest neighbors that percolates throughout
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Figure 4. (Color online) Percolation probability χ∞ with χ for lattice size L = 120 for
U2/U0 = 0.1 with disorder present in µ/U0 = 0.4 in (a). Phase diagram for W/U0 = 0.5
with ∆/U0 = 0 at U2/U0 = 0.1 in (b) and with ∆/U0 = 0.095 in U2/U0 and W/U0 = 0.5 in (c).

the lattice, that is from left to right and/or top to bottom. In MI phase, all sites have integer
densities thus no SF percolating cluster. While in SF phase, all sites have non integer densities
and thus have at least one SF percolating cluster. But in the BG phase, some sites have non
integer densities, while the rest will have integer densities. Hence the BG phase can be identified
with having a SF cluster which does not percolate.

Whether a SF cluster will percolate can be well understand from the following quantity,
χ∞ known as percolation probability, defined as the fraction of sites within the SF percolating
cluster out of total no of occupied sites [18]. To find a SF percolating cluster, we shall use
Hoshen-Kopelman(HK) algorithm to find a SF percolating cluster [19]. It is based on the
special application of the union-find algorithm where it aims to assign a label to each cluster.
For that we represent our 2D lattice as a matrix and label all occupied sites initially with -1 and
unoccupied sites with 0. Our cluster index starts with 1. Corresponding to each occupied site,
every time we check the neighbors at the top and left corner of the current site. If both sites are
empty, we label a new cluster number that has not used so far. Else, if the site has one occupied
neighbor, then we assign same cluster number to the current site. If both neighboring sites are
occupied, then we set the smallest number cluster label of the occupied neighbors to use as the
label for the current site. To link two clusters, we create a union between both labels and set
the site as the lowest of the two labels. When we burn the lattice for a second time, we collect
the unions and update the lattice [19]. χ∞ is analogous to critical percolation probability pc
which is 0.593 for infinite square lattice that is L = ∞ and the variation of χ∞ with χ is shown
in Fig.4(a). It shows that χ∞ is 0 till χ < 0.524 means no SF percolating cluster exists while it
is non zero above χ ≥ 0.524 where SF percolating cluster exists.

At this stage, we have now all information to determine the location of different phases and
thereby the phase diagrams entirely based on χ and χ∞. In clean state, phase diagram for AF
and F cases are obtained by either ψ or χ as shown in Figs.4(b) and 5(b). Although there is no
change in the first MI lobe but higher order MI lobes becomes more stable and the transition
from MI to SF phase increases due to W/U0. In the disordered case, we have obtained the
phase diagrams by incorporating the χ = 0 for MI phase, for BG phase, 0 < χ < χc = 0.43
corresponding to AF and 0 < χ < χc = 0.53 corresponding to F cases below which χ∞ = 0
and χc ≤ χ ≤ 1 for the SF phase and shown in Figs.4 and 5. It is quite helpful to mention
that the colors code in the legend are as follows-blue: MI, red: BG and yellow: SF phases
respectively. In AF case, BG phase only appears in between odd-even MI phase and due to
inclusion of three body interaction, the intervening BG phase becomes quite thin compared to
the MI phase [Fig.4(c)]. While in F case, the BG appears in between all MI lobes shows similar
phase diagrams if disorder is present in µ [Fig.5(c)]. We have also considered the disorder in µ
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Figure 5. (Color online) Phase diagram with disorder in AF for ∆/U0 = 0.5 in µ and
W/U0 = 0.5 (a). Phase diagrams in ferromagnetic case without disorder at U2/U0 = −0.2
(F) and W/U0 = 0.7 (b) and with disorder, ∆/U0 = 0.55 (c).

in AF case [Fig.5(a)] and interestingly from Fig.5(a), the BG can not destroy the MI lobes since
the disorder strength needed to dismiss the respective MI lobes is now lower than the critical
value ∆c which depends on W/U0 [12]. Similarly in F case, the first MI lobe vanishes due the
BG phase as ∆ is higher than the critical disorder strength [Fig.5(c)] [12].

4. Conclusion

We study the effect of spin dependent disorder in spinor BHM through percolation analysis in
presence of three body interactions. The different phases in presence of disorder are observed by
the SF order parameter and compressibility. The boundary for the MI, BG and SF phases are
determined with the help of percolation analysis and finally obtain the phase diagrams based
on χ. In AF case, the BG appears only for the odd-even MI transition and very thin compared
with the MI lobes due to the presence of three body interaction. We have also studied the effect
of disorder in ferromagnetic case and found that it has similar properties as that of disorder in
the chemical potential µ.
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