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Abstract. A spinless, extended Falicov-Kimball model in the presence of a
perpendicular magnetic field is investigated employing a self-consistent mean-field
theory in two dimensions. In the presence of the field the excitonic average
∆ =< di

†fi > is modified: the exciton responds in subtle different ways for different
values of the magnetic flux. We examine the effects of Coulomb interaction and
hybridization between the localized and itinerant electrons on the excitonic average,
for rational values of the applied magnetic field. The excitonic average is found to
get enhanced exponentially with the Coulomb interaction while it saturates at large
hybridization. The orbital magnetic field suppresses the excitonic average in general,
though a strong commensurability effect of the magnetic flux on the behaviour of the
excitonic order parameter is observed.

1. Introduction

The Falicov-Kimball model (FKM), involving a dispersive d-electron band, an atomic-

like f -electron state and an on-site Coulomb interaction U between them, is perhaps

the simplest lattice model to study many-body effects. Since its introduction in 1969

[1], to describe valence or metal-insulator transition in some transition metal oxides,

the model has been successful in describing several correlation effects [2], e.g., metal-

insulator transition [3], mixed-valence [4], the formation of ionic crystals [5, 6] and

orbital [7] and charge-density waves (CDW)[8]. Brandt and Schmidt [9] and Kennedy

and Lieb [8] showed that on a bipartite lattice at half-filling (nd = nf = 0.5), the f -

electrons order in the chequerboard pattern. Portengen et al. [10, 11] introduced

a k-dependent hybridization between d and f -bands and the resulting bound state

between d-electrons and f -holes underwent a Bose Einstein condensation (BEC) of d−f
‘excitons’. As d and f -states differ by an odd parity, this could lead to an ‘electronic

ferroelectricity’. In the weak-coupling mean-field theory, the formation of an order

parameter and the condensation thereof are concomitant. The Coulomb interaction U

gives rise to a nonvanishing d− f coherence < di
†fi >6= 0 even in the limit of V → 0 [10]
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in the presence of a putative homogeneous ground state under the HF approximation.

Czycholl [12] showed later that < di
†fi >→ 0 as V → 0, i.e., there is no spontaneous

symmetry breaking, consistent (but not contradictory at T = 0 though, where Elitzur’s

theorem does not forbid an order) with the local U(1) gauge symmetry at V = 0. For

a small non-zero V , the inhomogeneous (CDW) phase is stable, and the EOP is finite.

Similar conclusions were then reached for a triangular lattice as well [13]. Indeed the

Coulomb interaction between the conduction band electron and the valence band hole

causes the formation of an excitonic bound state in some materials.

Recently, there is report of possible transition to an excitonic insulating state in

the quasi-1D Ta2NiSe5 due to BEC of these bound states [14]. A moot question is

what happens to such an excitonic condensate in the presence of orbital field. This

kind of gauge-field can be experimentally realised in ultracold particles (fermions and

bosons) in optical lattices. Moreover, of late, there are proposals for the realization

of FKM in optical lattices with mixtures of light atoms in the correlated, disordered

environment of heavy atoms [15, 16]. Therefore, it is quite pertinent to appraise an

extended Falicov-Kimball model (EFKM) in optical lattices in the presence of artificial

gauge fields. In a spinful situation, strong magnetic field may cause the two Zeeman-

split bands to move sufficiently apart, and at low filling only the lower band is relevant,

effectively reducing it to a spinless problem. We implement a self-consistent mean-field

calculation to study the effect of a perpendicular magnetic field in the spinless model.

We first examine the case without a magnetic field and then study the effect of the field

on the exciton condensation. Results for commensurate and incommensurate magnetic

fluxes are discussed.

2. An extended Falicov Kimball model

We consider an EFKM, a model system with spinless electrons arising from d and f

orbitals on every site on a square lattice

H = −
∑
<ij>

(tijdi
†dj + h.c.) + U

∑
i

di
†difi

†fi + Ef
∑
i

fi
†fi +

∑
i

V (di
†fi + h.c.) (1)

where < i, j > are nearest-neighbour site indices on a square lattice (lattice constant

a = 1), di (fi) are itinerant (localized) electron annihilation operators at site i. The

first term represents the kinetic energy of d-electrons while the second term represents

on-site Coulomb interaction between d (density nd = 1
N

∑
i

di
†di) and f -electrons (at Ef ,

with density nf = 1
N

∑
i

fi
†fi; N being the number of sites). The fourth term stands

for the hybridization between them. We set the hopping integral t to 1 and all energies

are defined in units of t. For V = 0, the Hamiltonian commutes with n̂f,i, in which

case nf,i is a good quantum number. It can be ‘solved’ numerically by annealing over

the f -electron positions. For V 6= 0 the local U(1) gauge symmetry is removed and the

Hamiltonian is no longer exactly solvable, albeit in the above sense. We, therefore, take

recourse to the usual self-consistent mean-field approximation to obtain the excitonic
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average ∆ =< di
†fi >. The inhomogeneous mean-field theory discussed below allows

for local excitonic order parameter (EOP) and involves diagonalizing the mean-field

Hamiltonian matrix followed by calculation of the EOP. The new EOP’s are then fed

back in to the Hamiltoanian and the process continues till convergence (up to 10−7%)

in all the EOP’s is reached.

3. Effect of perpendicular magnetic field

For B 6= 0, the spinless, mobile fermions ‘see’ the field via the canonically conjugate

momentum. The field then couples to the ‘orbital degrees’ only. With the choice of

Landau gauge ~A(r) = B(0, x, 0) for a uniform magnetic field B perpendicular to the

plane of the lattice, the hopping integral does not change in x-direction while along the

y-direction it gets a ‘Peierls phase’ tij = −t exp(±ie/h̄
∫ i

j
A(~r)d~r)=−t exp(±2πim φ

φ0
).

Here, φ=Ba2 is the flux per plaquette of a square lattice. This represents the gain of

phase by an electron, hopping along a closed path around the plaquette. We consider

only rational magnetic flux, i.e., φ = p
q
φ0 = αφ0 with p, q co-prime integers and φ0, the

Dirac flux quantum. As is customary, the lattice is discretized by (x, y) = (ma, nb) -

each site is then indexed by two integers “(m,n)” along (x, y)-directions (m, n now stand

for the x, y coordinates in this discrete geometry) respectively. Peierls phases leave the

Hamiltonian invariant only for such translations that are in the magnetic translation

group [17]. This group is associated with a magnetic unit cell q times larger than the

original unit cell, so as to enfold an integer flux pφ0. With the choice of a Landau

gauge, the hopping in y-direction is associated with a phase which again depends on the

x-component of the position vector “m”. Therefore, to accommodate a magnetic flux

B = 2π
L

, the resultant magnetic supercell will have to be a strip of length L [18] (we use

maximum L = 36). We work in the half-filled limit (nf + nd = 1), in the particle-hole

symmetric case at zero temperature. In the non-interacting limit, the problem reduces

to the original Hofstadter model (as the f -electrons do not enter in the problem now)

and shows the well-known energy spectrum: a self-similar structure in which widths and

gaps open and close depending on the values of the magnetic flux [19, 20].

4. Results and discussions

To check our numerical procedure we start with the extended (V 6= 0) FKM in the

symmetric case (Ef = 0 and nd = nf = 0.5) without the transverse field. We study

the effect of Coulomb interaction on the stability of excitons. It is evident from Fig. 1

that ∆ = 0 in the V → 0 as expected on symmetry grounds. For a finite V , there is a

nonvanishing ∆ that is strongly enhanced as U increases. As we increase hybridization

between d and f electrons, for a fixed Coulomb correlation, we find an enhancement in

the EOP. In the V → 0 limit we find a CDW ground state, which melts on increasing

V . Moreover, we study the effect of Coulomb interaction: the effect of U is more for

small-V regime: the EOP is exponentially enhanced with U as expected. These results

are in complete agreement with previous results in a wide parameter regime [12, 13].
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Figure 1. The mean-field behaviour of ∆

= < di
†fi > in the UV plane in the

zero-field limit.
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Figure 2.(a) ∆ versus α for different V

(inset: V = 0.1) at constant U = 0.2. (b)

EOP with α for different U at fixed

V = 0.20.

The effect of orbital magnetic field on the evolution of excitons is a question we address

next. With flux α 6= 0 per plaquette, the hopping term is associated with a phase

which affects the exciton formation. In Fig. 2, the EOP is suppressed by the field

(note the negative sign of the EOP, so it increases downwards) and a prominent peak

at α = 0.25 and a dip at α = 1/3 can be seen for U = 0. There is a large peak at

α = 0.5; signifying the value of α at which ∆ is a minimum: same is the case for all the

U . The large oscillations of ∆ reduce with larger U . As the Hamiltonian is symmetric,

between α and 1± α, Fig. 2 is symmetric about α = 0.5 and displays typical Hofstadter

characteristics like the non-interacting limit. The variation of ∆ with V more or less

follows the same pattern as in the absence of magnetic field (see Fig. 3(a)). However,

for a fixed U , the general tendency is that the excitonic average reduces with increase

in magnetic filed. However, it is also possible to get an enhancement in the excitonic

average in a region where hybridization and correlation effects are quite weak (see Fig.

3(b)) for special (here 1/3) values of the flux. This is likely to be related to the extra

stabilization in the band energy at special flux values, also observed in the Hofstadter

spectrum [19].

In the presence of field, there is serious commensurability effect on the excitonic

average. For certain values of d − f correlation and hybridization, the system is

essentially in the homogeneous state. From Fig. 4, we see that for some magnetic

flux values, the magnetic unit cell is commensurate with the lattice size (in the present

study on a 24 × 24 lattice, 1/24, 2/24, 3/24..12/24 and so on, represent commensurate

fluxes) and the excitonic average is uniform throughout the lattice. With increase

in the value of the commensurate flux, magnitude of ∆ decreases and the EOP is

uniform. On the other hand, the EOP varies in a quite different way when the magnetic

flux is incommensurate. In this case, the excitonic average exhibits a one-dimensional

modulation and the modulation length changes with the flux (Fig. 4(b), (c)).
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Figure 3. (a) EOP with V for several α

at U = 0.20. (b) α = 1/3 (dashed line).

(c) ∆ vs V at different U with α = 0.25.
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Figure 4. The EOP on a 2D lattice plane

for α (a) commensurate (b) 0.1, (c) 0.37.

At U = 1.0 and V = 0.2.

5. Summary and conclusion

We observe the competition between magnetic field and Coulomb correlation in a

prototype correlated lattice model. The Coulomb interaction exponentially enhances

the excitonic average while the orbital magnetic field has a localizing effect on mobile

d-electrons, affecting the excitonic coherence: a drop in the value of excitonic average

(hence electronic ferro-electricity) with both commensurate and incommensurate flux.

In the small V limit, there is a special value (α = 1/3) of the field which gives extra

stability to the exciton. These observations open up the possibility of tuning ferro-

electricity via applied magnetic field.
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