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Abstract. Using the multi-probe Landauer-Büttiker formula and Green’s function approach,
we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in
a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC)
and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder
strengths. It has been found that when the strengths of the RSOC and DSOC are same, the
SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero
when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same.
This indicates that the cancellation of SHC is robust even in the presence of random disorder.
Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as
the strength of SDD increases. The physical implication of the existence of a non-zero SHC has
been explored in this work. Finally, we have compared the effect of onsite SDD and hopping
SDD on both longitudinal and spin Hall conductances.

1. Introduction

The notion of dissipationless spin current [1] has attracted considerable interest recently. The
spin-orbit coupling produces a transverse force on a moving electron and this force tends to
form a transverse spin current. In the simplest form, a spin current is about the flow of spin-up
electrons in one direction, say +x, accompanied by the flow of an equal number of spin-down
electrons in the opposite direction, −x. The total charge current in the x direction is therefore
zero, Ie = e (I↑ + I↓) = 0. The total spin current is finite: Is = e (I↑ − I↓) 6= 0.

In a two-dimensional electron gas (2DEG) lacking structure inversion symmetry of the
confining potential and bulk inversion symmetry, the effective Hamiltonian is given by,

H =
p2

2m∗
+ α (σxpy − σypx) + β (σxpx − σypy) (1)

where the second term is the Rashba spin-orbit coupling (RSOC) and the third term is the
Dresselhaus spin-orbit coupling (DSOC). σx/y is the x/y component of the Pauli matrices, and α
and β are the coupling parameters which denote the strengths of RSOC and DSOC respectively.

In this paper, we investigate the effect of a spin dependent random disorder on a four terminal
square lattice in presence of both Rashba and Dresselhaus spin orbit interactions. Recently it
has become possible to create the spin dependent disorder within a new experimental context,
namely that of ultracold fermionic and bosonic atomic gases confined to optical lattices [5, 6].
Few theoretical works have been done on this context [2, 3, 4]. However, till now it is not
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possible to create experimentally which facilitate studying of such phenomena in mesoscopic
physics. Nevertheless, the issue deserves to be studied theoretically.

We organize our paper as follows. The theoretical formalism leading to the expressions for
the spin Hall and longitudinal conductances using Landauer Bütiker formula are presented in
section II. Section III includes an elaborate discussion on the results obtained for the spin Hall
and longitudinal conductances that are helpful in studying the effect of spin dependent disorder
on four terminal junction device in presence of spin orbit interactions.

2. Theoretical formulation
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Figure 1. Cross-shaped device with four
semi-infinite metallic leads. The spin-orbit
coupling exists in the central region only, and
the effect of the semi-infinite leads is treated
exactly through the self-energy terms.

We choose a four-probe measuring set-up as shown in Fig.1 to observe the spin Hall effect.
Here the four ideal semi-infinite leads are attached to the central conducting region which in
our case is a square lattice with spin orbit interaction. An unpolarized charge current is allowed
to pass through the longitudinal leads along lead-1 and lead-2 (see Fig.1) inducing spin Hall
current in the transverse directions that is along lead-3 and lead-4. With the tight binding
approximation for nearest neighbour interaction, Eq.(1) reads as,

H =
∑

i,σ

ǫiσc
†
iσciσ +

∑

〈ij〉,σ

tij,σc
†
iσcjσ + VR

∑

i

[(

c†i↑ci+δx↓ − c†i↓ci+δx↑

)

− i
(

c†i↑ci+δy↓ + c†i↓ci+δy↑

)]

+VD

∑

i

[

(−i)
(

c†i↑ci+δx↓ + c†i↓ci+δx↑

)

+
(

c†i↑ci+δy↓ − c†i↓ci+δy↑

)]

(2)

Here ǫiσ is the random on-site spin dependent potential and tij,σ is the spin dependent hopping

strength chosen from a uniform rectangular distribution (−W to W ), VR = h̄α
a0

and VD = h̄β
a0

are the Rashba and Dresselhaus coupling strengths, respectively. δx/y is the unit vector along
x/y direction.

For the four-probe case, where pure spin current is expected to flow through the transverse
leads, due to the flow of charge current through the longitudinal leads, the longitudinal and spin
Hall conductances are defined as [7],

GL =
Iq2

V1 − V2

and GSH =
h̄

2e

Is3
V1 − V3

=
h̄

2e

I↑3 − I↓3
V1 − V3

(3)

where Iq2 and Is3 are the charge and spin current flowing through the lead-2 and lead-3

respectively. Vm is the potential at the m-th lead. I↑3 and I↓3 are the up and down spin currents
flowing in lead-3.

The calculation of electric and spin currents is based on the Landauer-Büttiker multi-probe
formalism [8]. The charge and spin currents flowing through the lead m with potential Vm, can
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be written in terms of spin resolved transmission probability as [9]

Iqm =
e2

h

∑

n 6=m,σ,σ′

(

T σσ′

nm Vm − T σ′σ
mn Vn

)

(4)

Ism =
e2

h

∑

n 6=m,σ′

[(

T σ′σ
nm − T σ′−σ

nm

)

Vm +
(

T−σσ′

mn − T σσ′

mn

)

Vn

]

=
e2

h

∑

n 6=m

[

T out
nmVm − T in

mnVn

]

(5)

where, we have defined two useful quantities as follows,

T in
pq = T ↑↑

pq + T ↑↓
pq − T ↓↑

pq − T ↓↓
pq and T out

pq = T ↑↑
pq + T ↓↑

pq − T ↑↓
pq − T ↓↓

pq (6)

Physically, the term e2

h

∑

n 6=m
T out
nmVm is the total spin current flowing from the m-th lead with

potential Vm to all other n leads, while the term e2

h

∑

n 6=m
T in
mnVn is the total spin current flowing

into the m-th lead from all other n leads having potential Vn.
The zero temperature conductance, Gσσ′

pq that describes the spin resolved transport

measurements, is related to the spin resolved transmission coefficient as [10, 11], Gσσ′

pq =
e2

h T
σσ′

pq (E). The transmission coefficient can be calculated as [12, 13], T σσ′

pq = Tr
[

Γσ
pGRΓ

σ′

q GA

]

.

Γσ
p ’s are the coupling matrices representing the coupling between the central region and the

leads, and they are defined by the relation [14], Γσ
p = i

[

Σσ
p − (Σσ

p )
†
]

. Here Σσ
p is the retarded

self-energy associated with the lead p. The self-energy contribution is computed by modeling
each terminal as a semi-infinite perfect wire [15].

The retarded Green’s function, GR is computed as GR =

(

E −H −
4
∑

p=1
Σp

)−1

, where E is

the electron Fermi energy and H is the model Hamiltonian for the central conducting region.

The advanced Green’s function is, GA = G†
R.

Now, following the spin Hall phenomenology, in our set-up since the transverse leads are
voltage probes, Iq3 = Iq4 = 0. Also, as the currents in various leads depend only on voltage
differences among them, we can set one of the voltages to zero without any loss of generality.
Here we set V2 = 0. Finally, if we assume that the leads are connected to a geometrically
symmetric ordered bridge, so, V3

V1
= V4

V1
= 1

2
. Now from Eq.(5), Eq.(3) and Eq.(4) we can write

the expression of spin Hall and the longitudinal conductances as,

GSH =
e

8π

(

T out
13 + T out

43 + T out
23 − T in

34 − T in
31

)

and GL =
e2

h

(

T21 +
1

2
T32 +

1

2
T42

)

(7)

3. Results and Discussion

We have investigated the effect of spin dependent disorder (onsite and hopping) (W ) in presence
of spin orbit coupling (both Rashba and Dresselhaus terms) on the experimentally measurable
quantities such as the longitudinal conductance (GL) and the spin Hall conductance (GSH).

Before we start computing the physical quantities, we briefly describe the values of different
parameters used in our calculation. Throughout our work, we have considered lattice constant,
a = 1, system size, L = 20, onsite term, ǫ = ǫL = 0, hopping term, t = tL = tC = 1. All
the energies are measured in unit of t. Further we choose a unit where c = h = e = 1. The

longitudinal conductance, GL is measured in unit of e2

h . The spin Hall conductance, GSH is
measured in unit of e

8π .
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Disorder (onsite and hopping) in the system is modeled by a random rectangular distribution
between [−W,+W ]. We consider two different types of disorder:
(i) Spin dependent disorder for the up spin (USDD) with W↑ = W and W↓ = 0,
(ii) Spin dependent disorder for the down spin (DSDD) with W↑ = 0 and W↓ = W .

All the results obtained below are averaged over 1000 disorder configurations. For most of
our numerical calculations we have used KWANT [16].

There exists a special case at the symmetric point of VR = VD. The spin Hall conductance
(SHC) vanishes at that point [17, 18]. In presence of onsite or hopping spin independent disorder
(SID), SHC is still zero in the given symmetric case. However, the main finding of the paper is
that when we introduce onsite or hopping spin dependent disorder, we found a non-zero SHC.

Fig.2 shows the variation of spin Hall conductance as a function of energy E, in presence
of onsite and hopping SDD when Rashba and Dresselhaus spin orbit interaction have the same
strengths (VR = VD). Here, WOσ stands for the onsite disorder with spin σ and WHσ is the
hopping disorder with spin σ. In Fig.2(a), GSH increases in the negative region with increasing
the strength of USDD.

The same thing happens with DSDD, except the value of GSH which acquires non zero values
in the positive region as shown in Fig.2(b). Another interesting point is that the hopping SDD
is much more efficient to increase SHC in magnitude than onsite SDD.

We can explain this non-zero SHC from the definition of the spin current (Eq.(3)). As we

introduce SDD in the up spin electron, I↑3 (up spin current flowing in terminal 3) will decrease

and most of I↓3 (down spin current flowing in terminal 3) will reach lead 3, resulting negative
GSH . The same argument will render positive GSH in case of DSDD.
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Figure 2. The spin Hall conductance, GSH (in units of e/8π) is plotted as a function of energy
E when both the interactions have the same strength, i.e. VR = VD. (a) Onsite and hopping
USDD, (b) onsite and hopping DSDD.

In Fig.3, we have studied the variation of longitudinal conductance, GL as a function of energy
(E) for different spin dependent disorder strengths (W ). Fig.3(a) shows GL vs E plot for onsite
and hopping disorder with different USDD strengths. For WO↑ = 2 and WH↑ = 1, the value of
GL remains almost same, implying that the hopping disorder is more efficient to decrease the
longitudinal conductance. Fig.3(b) shows GL vs E plot for the DSDD case. Hopping disorder
is again found to be more efficient to suppress longitudinal conductance than onsite disorder.
Hence we can say that the variation of GL is independent of SDD, i.e., GL remains same for
both USDD and DSDD irrespective of the onsite and hopping disorder.

We can explain why the longitudinal conductance is independent of spin dependent disorder
from (Eq.(3)). GL is just the ratio between Is3 (the total charge current flowing in terminal
3) and V3 (the voltage at terminal 3). Since the expressions of GL contains the total charge
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current, no matter what type of SDD is introduced, the total charge current at terminal 3, Iq3
will always be the same. As a result, GL is independent of SDD.
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Figure 3. The longitudinal conductance, GL (in units of e2/h) is plotted as a function of energy
E when both the interactions have the same strength, i.e. VR = VD. (a) Onsite and hopping
USDD, (b) onsite and hopping DSDD.
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Figure 4. (a) GSH is plotted as a function of disorder strength, W . (b) GL is plotted as a
function of disorder strength.

The variation of GSH as a function of disorder, W at E = 0 is shown in Fig.4. Here we set
the energy at E = 0. From Fig.4(a) we see that for USDD, GSH starts to increase with W↑

and tends to saturate in the negative region. For DSDD, GSH shows a behaviour which looks
like a mirror reflection of the corresponding feature for USDD . From Fig.4(a) it is clear that
GSH increases more in case of hopping disorder than that of onsite disorder. Fig.4(b) shows the
variation of GL as a function of disorder strength. For both USDD and DSDD, the variation of
GL is exactly the same as we saw in Fig.3. Here GL decreases with increasing disorder strength
and finally tends to saturate in the higher region of W . In case of hopping disorder, GL decreases
more abruptly than the onsite case. GSH becomes negative for USDD and positive for DSDD.

In presence of USDD, I↑3 will be suppressed and for larger value of W↑, I
↑
3 ≃ 0. As a result GSH

tends to saturate in the higher region of W↑.
In order to study the effect of system size on GSH and GL in presence of SDD, we fixed

width of the scattering region to lattice of size L = 20 and set energy, E = 0. Fig.5(a) shows
the variation of GSH as a function of the system size, L. Here GSH is essentially constant
except when the width is lower than the length of the scattering region. GSH is almost same
for WO↑ = 2 and WH↑ = 1. Fig.5(b) shows the variation of GL as a function of the system size,
L. GL decreases with length and then becomes almost constant.
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Figure 5. (a) GSH is plotted as a function of system size, L. (b) GL is plotted as a function of
system size.

After a certain value of L, both GSH and GL remain constant with L. GSH takes appropriate
sign depending upon the nature of the SDD as we discussed earlier. Whereas, the variation of
GL with L is found to be independent of the nature of SDD.

4. Summary and Conclusions

In summary, in the present work we have studied the effect of spin dependent disorder effect
on a four terminal junction device in presence of Rashba and Dresselhaus spin orbit coupling,
specifically when the strengths of the two types of the spin orbit coupling are the same.

Spin dependent disorder can produce a non zero GSH even if the strengths of RSOC and
DSOC are the same. Higher the SDD, larger is the GSH (in magnitude). GSH is symmetric
about E = 0 and takes opposite signs for different types of SDD. Hopping disorder is more
efficient to increase GSH than the onsite disorder. GL is independent of the nature of SDD.
With the same disorder strength, GL decreases more in case of hopping disorder than the onsite
case. With increasing the strength of SDD, both GL and GSH tend to saturate in the higher
region of SDD. Further, we have found that essentially GL and GSH are independent of length
(L) of the sample, at least for larger values of L.
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