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Abstract. Despite the absence of retinal input, the blind-spot gets filled up with surrounding visual 
attributes. This phenomenon is called the perceptual filling-in or completion. Various possible 
neural mechanisms have been proposed but most of these are not entirely consistent with the 
findings of brain activation and brain organization. In one study, recently, it has been shown that 
the filling-in of the shifting bar and the anisotropy in the filling-in of misaligned bars could be 
explained by incorporating a common general principle called hierarchical predictive coding 
(HPC). In this report, we have extended this proposition to explain the filling-in of oriented bars. 
We have considered a three level (LGN-V1-V2) HPC model network in which, the blind-spot was 
emulated by removing the corresponding feed-forward (LGN-V1) connection. We simulated the 
responses of predictive estimator (PE) neurons at blind-spot while stimulating the network with 
oriented bar stimuli.  Results show that the filling-in is best for aligned bars but it faded away with 
increasing orientation and moreover, corners were not predicted in any orientation. Qualitatively, 
these results are consistent with the findings of psychophysical experiments. We discussed this 
phenomenon in the HPC framework and argue that in the absence feed-forward connections, the 
best prediction is dominated by learned statistical regularities that include an abundance of bar and 
similar structures. These results suggest that the filling-in process could be a manifestation of HPC.    

1. Introduction 
Because of the absence of photoreceptors at optics disc, the retina is unable to send the corresponding 
signal to the brain and thereby and therefore, some portion of the visual field is hidden. However, we 
never notice any odd patch due the hidden visual field, known as blind-spot, even in monocular vision, but 
rather we see the complete scene; filled up in accordance with the surrounding visual attributes [1]. This 
process is known as perceptual filling-in or simply filling-in. In addition to the blind spot, filling-in also 
occurs in other visual input deficit conditions, e.g. filling-in at the artificial and natural retinal scotoma [2, 
3]. Filling-in also observed in visual illusions such as Neon colour spreading, Craik-O’Brien-Cornsweet 
illusion, Kanizsa shapes, and etc. and steady fixation condition like Troxler effect (for review see [4]. 

Psychophysical and physiological studies suggest that the filling-in is an active process, where 
some neural processes are involved and mainly take place in the early visual cortex [5-7]. Studies show 
that neural activities, correlated to perceptual experiences, are evoked in the deep layer of primary visual 
cortex, when filling-in completion occurs [5, 6]. Matsumoto and Komatsu [7] demonstrated that some 
neuron in BS region in deep layer of primary visual cortex (BS neurons), which possess larger receptive 
fields that extend beyond the blind spot, exhibits non-linear elevated response when a long moving bar 
cross over the blind spot and perceptual completion occurs.  

Although some attempts have been made to understand the computational mechanism of general 
filling-in [8-13], little work has been devoted to the study of computational mechanism of filling-in 
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completion at the blind spot and the current knowledge is far from complete. Recently, it has been shown 
that the filling-in of the shifting bar and the anisotropy in the filling-in of misaligned bars could be 
predicted by incorporating HPC [14], which has, recently, been argued as a general coding principle of the 
visual cortex [15-22]. Here in this study, we have expanded the scope of HPC by demonstrating that the 
some results related to oriented bar filling-in could also be explained using this same general principle.  

 
Functionality of a network in the HPC framework largely depends on a probabilistic hierarchical 

generative model and the efficient coding of natural images. In this framework, the visual system attempts 
to infer or estimate the properties of the world from signals coming from receptors [23-25]. This job is 
hypothesized to be completed by concurrent prediction-correction mechanism along the hierarchy of the 
visual system. Each higher visual area (say V2) attempt to predict the response at its lower area (say V1) 
on the basis of the learned statistical regularities, and send that prediction signal to the lower area by 
feedback connection. Lower area, in response, sends a residual error signal, signifying any mismatch, to 
the higher area by feed-forward connection. Neural networks, in this paradigm, are constantly attempting 
to match sensory input with the top-down predictions that are based on the learned statistical regularities 
of natural scenes. By using its best current predictions as the priors for the levels below and engaging in 
iterative estimation, the network allows priors and predictions to co-evolve to arrive at the best prediction.  

This idea is based on the anatomical architecture of the visual system which is hierarchically 
organized and reciprocally connected [27]. Recently, several neuronal tuning properties in different visual 
areas such as the lateral geniculate nucleus (LGN), primary visual cortex (V1) and middle temporal level 
(MT) have been explained using this framework  [19, 20]. For example, Rao [14] suggested that the extra-
classical properties of neurons in V1 could be understood in terms of predictive-feedback signal from the 
secondary visual cortex (V2). We speculated that a similar computational mechanism could also explain 
the filling-in completion at the blind spot. 

 
In this report, we have investigated the filling-in of oriented bars under a fresh perspective of 

HPC. We have considered a three level (LGN-V1-V2) HPC model network in which, the blind-spot was 
emulated by removing the corresponding feed-forward (LGN-V1) connection in early visual area. We 
simulated the responses of predictive estimator (PE) neurons at blind-spot while stimulating the network 
with oriented bar stimuli across the blind-spot.  Results show that the filling-in is best for aligned bars but 
it faded away with increasing orientation. Additionally, we also observed that the corners were not 
predicted in any orientation. These results are consistent with the finding of psychophysical experiment 
[28].  

We discussed this phenomenon in the HPC framework and argue that in the absence feed-forward 
connections, the best prediction is dominated by learned statistical regularities that include an abundance 
of bar and similar structures and anisotropy in orientation distribution. These results suggest that the 
filling-in process could be a manifestation of HPC.  

 

2. Methods 

2.1 Hierarchical Predictive coding of natural images 
A general computational HPC architecture is illustrated in figure 1. In this framework, on the arrival of an 
input, predictor estimator modules (PE module) at each visual processing level generate the prediction (or 
estimate) on the basis of the learned statistical regularities. Each higher area (say V2) then sends these 
predictions to its immediate lower level (say V1) by feedback connections and in return receives the error 
signal, by feed-forward connections. An equilibrium state is achieved after several concurrent prediction-
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correction cycles, where the estimate approximately matches the input signal caused by the stimuli. This 
optimum-estimate is regarded as a representation of the input at that level. 

A single PE module (figure 2(b)) consists of, (i) Predictive estimator neurons (PE neurons) which 
represent the estimate of current input signal I  with response vector r  (state vector), (ii) neurons that 
carry prediction signal Ur  (for the input I ) to lower level by feed-back connections, whose synapse 
encode encoding efficacy matrix U , (iii) neurons that carry feed-forward error signal ( UI r ) from lower  
level to higher level, whose synapses encoded rows of efficacy matrix TU , and (iv) error detecting neurons 
which carry the residual error signal ( tdr r ) to the higher level corresponding to the prediction tdr  from 
the higher level. 
 
2.2 Network dynamics and learning rule  

In the Bayesian framework (maximum a posteriori (MAP) approach), the dynamics and the learning can 
be derived by maximizing the posterior probability ( , , | )tdP Ur r I , which is equal to the product of 

( | , )P UI r , ( | )tdP r r  and prior probabilities ( )P r  and ( )P U , with respect to r  and U  respectively. 

By assuming ( | , )P UI r  and ( | )tdP r r  as Gaussians of zero mean and variances 2  and 2
td  

respectively, the total coding length E  can be written as (for details, see [15], [21]),  

 2 2

1 1
= ( ) ( ) ( ) ( ) ( ) ( )T td T td

td

E U U g h UI r I r r r r r r  (1) 

here, ( )g r  and ( )h U  are the negative log of prior probabilities ( )P r  and ( )P U  respectively. Minimizing 
the coding length E , with respect to r  provides the dynamics of PE module and it is equivalent to 
recurrently achieving an internal state matching the “sensory driven” input. The visual representation of 
the predicationUr , is regarded as the representation of our perception. Furthermore, the minimization of 
coding length E , with respect to U  provides the learning rule for basis matrixU . A kurtotic prior 
distribution ( 2( ) = ( (1 ))i iP r exp log r ) is chosen for the prior probability for embedding sparse 
representation [25]. 
 

3.  Simulation 
In this study, we have utilised a three level linear HPC network (similar to [14]), where level 1 (equivalent 
to V1) consists of 9 PE modules. These modules receive input from level 0 (LGN) and send the output to 

 

 
Figure  1.  General HPC architecture (adopted from Rao.[15]). a) Illustration of connections between PE 
modules at different levels,  b) Details of computation performed by each PE module.  
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the sole module at level 2 (equivalent to V2). Therefore, the PE module at level 2 receives input from all 
the nine level 1 PE modules and sends back the feedback signal to all of them. This architecture is based 
on the fact that the visual area higher in hierarchy operates on a higher spatial scale. Each PE module at 
level 1 consists of 64 PE neurons, 144 Prediction carrying neurons, 64 afferent error carrying neurons and 
64 error detecting neurons for conveying the residual error to level 2. The layer 2 module consists of 169 
PE neurons, 576 prediction carrying neurons and 169 error carrying neurons. Six natural images of size 
512 512  pixels were used for training after pre-processing with a low-pass filter of cut-off frequency 200 
cycles/image. Variance normalized 1000 batches of 100 image patches of size 3030  pixel, which were 
extracted from randomly selected locations from the randomly selected pre-processed images, were given 
as input to the network. For each batch of image patches, the network was allowed to achieve steady states 
and the average of these states was used to update the efficacy of neurons initially assigned random value 
(for details see [25, 26]).  
To mimic the blind spot the feed-forward connection in a certain area was removed from the model 
network, which was pre-trained with usual feed-forward connections. The removal was implemented by 
setting the efficacy of early feed-forward (level 0 - level 1) neurons to zero. This “pre-training” preserved 
the experimentally observed binocular nature of these active neurons in the deep layer (5/6) (for the detail 
see [14]).   

 

4. Results  
Initially, the model network was trained with binocular connections. This resulted in the Gabor like 
receptive field (RF) at level 1 whereas, level 2 learned more abstract RF (e.g. corner, long bar etc.) similar 
to those reported in earlier studies [14,25,26]. After the completion of the learning process, the network 

was modified to accommodate the blind spot before stimulated with the bar stimuli shown in figure 2(a). 
One part of the bar was fixed at a position outside of blind spot. Orientation of the other part was varied 
from horizontal to vertical position producing ten different input stimuli. We recorded the response PE 
neurons at level 1 to these stimuli, and generated the corresponding ‘perceptual images’, which we defined 
as reconstructionUr . These ‘perceptual images’ (figure 2(b)) demonstrate that the filling-in is best when 

 
(a) (b) (c) 

Figure  2.  Results of oriented bar filling-in. a) Stimulus used for the study is shown. One part of the 
stimulus, the horizontal black bar, was fixed. The other part was rotated clockwise from its initial 
horizontal position (dotted bar) to the vertical position in steps of 10 degree. The central rectangle is BS 
and the outer rectangle (dotted) is the receptive field. Rectangular regions are shown for illustration only,  
b) Perceptual images, generated from the response of PE neurons at level 1,  corresponding to all ten 
orientations of stimulus are shown, c) Average response at the centre (2x2) of the BS region in (b) is 
plotted as a function of orientation angle. 
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the bars were aligned (horizontal) and with the increasing mismatch in orientation, the filling-in 
deteriorates. This is illustrated in more detail in figure 2(c), where the average pixel value at the centre of 
the BS region is plotted as a function of the orientation difference. This plot demonstrates that filling-in 
deteriorates at a faster rate till 40 degree and for further increase in angle, it still deteriorates but with a 
slower rate till 60 degree difference in orientation, Thereafter, a little increase is also visible in the plot. 
The observed decrease in filling-in corroborates the experimental findings reported in [28]. Additionally, 
in none of these results (figure 2(b)), corners are visible, which leads to the conclusion that corners were 
never anticipated in the top-down expectation. Regarding the increase in filling-in beyond 60 degree, it is 
not possible to make any concluding remark and this discussed in detail in the discussion section. 
 

5. Discussion 
In this study, we have investigated the computational aspects of oriented bar filling-in at the blind spot. 
We postulated that this could be understood in the HPC paradigm inside the visual cortex and therefore, 
conducted simulation studies on the three level HPC model network modified in accordance with the 
blind-spot architecture. Our studies show that the filling-in completion, which occurs in the case of 
perfectly aligned bar segments, also happens with a small degree of misalignment, but the extent of 
filling-in completion deteriorates with increasing misalignment in orientation (figure 2).  
These results show good agreement with the physiological and psychophysical results reported earlier [28] 
and can be discussed in the context of HPC. When an input stimulus was presented in and around the 
blind spot, higher areas (V2) generated a unified estimate for the input stimuli on the basis of the learned 
statistical regularities of natural scenes. In nature, these statistical regularities are dominated by the 
abundance of straight continuous bars and similar structures and therefore, these structures are much more 
probable, compared to other non-linear continuous structures, in the predictions made by the higher visual 
area (V2). These predictions remain uncorrected due to the absence of error carrying feed-forward 
connection in BS region at V1 and therefore, local optimum-estimate is achieved essentially by the top-
down expectation.  
 
In case of aligned bars on both sides of the BS region (the first case in figure 2(b)), the visual system 
received inputs corresponding to the presence bars on both sides. This is interpreted as the presence of a 
long straight continuous bar because in natural image statistics the presence of a broken bar or two bars 
side by side is less probable and this is reflected in the response of PE neurons announcing the prediction 
of a long bar across the BS resulting in the perception of a near perfect filling-in. In other cases, the model 
system received inputs corresponding to the presence of bars with different orientations. As long as the 
difference in orientation was small, the model system was able to interpret it as a continuous bar and 
filling-in occurred. With increasing angles, however, the higher area (V2)  faces increased difficulties in 
interpreting two oriented bars as parts of a long continuous (may be non-linear) bar resulting in the 
deterioration of filling-in. Beyond a certain threshold, the system fails to predict anything more than what 
is visible and the filling-in ceases to happen.  
 
To illustrate the varying filling-in with increasing angles, we have plotted average pixel value recorded at 
the centre of the BS region as a function of angle in figure 2(c). It shows that the value decreases till 60 
degree and then increases a little. It may look like that filling-in never fails but varies with increasing 
angles. The problem lies in the interpretation of a threshold. In similar psychophysical experiments, 
participants report the occurrence or non-occurrence of filling-in depending on their perceptual 
experience. However, in our simulation study, there exists no such threshold and in fact, it is very difficult 
to define an equivalent one without further extension of the current model incorporating much more 
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details properties of the visual cortex. This is precisely why the filling-in never fails (figure 2(c)), though 
deteriorates, with increasing difference in orientation  
 
In conclusion, we demonstrate that some aspects of oriented bar filling-in could be explained in the 
computational paradigm of HPC. We show that, in the absence of feed-forward connection due to the 
blind-spot, the top-down predictions (in accordance with learned statistical regularities of natural scene) 
mainly determines the nature of filling-in that corroborates well with experimental findings. These results 
suggest that the filling-in could be a manifestation of a hierarchical predictive coding principle. 
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