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Abstract. MEMS-based airgap optical filters are composed of quarter-wave thick high-index
dielectric membranes that are separated by airgaps. The main challenge in the fabrication
of these filters is the intertwined optical and mechanical requirements. The thickness of the
layers decreases with design wavelength, which makes the optical performance in the UV more
susceptible to fabrication tolerances, such as thickness and composition of the deposited layers,
while the ability to sustain a certain level of residual stress by the structural strength becomes
more critical. Silicon-nitride has a comparatively high Young’s modulus and good optical
properties, which makes it a suitable candidate as the membrane material. However, both the
mechanical and optical properties in a silicon-nitride film strongly depend on the specifics of the
deposition process. A design trade-off is required between the mechanical strength and the index
of refraction, by tuning the silicon content in the silicon-nitride film. However, also the benefit
of a high index of refraction in a silicon-rich film should be weighed against the increased UV
optical absorption. This work presents the design, fabrication, and preliminary characterization
of one and three quarter-wave thick silicon-nitride membranes with a one-quarter airgap and
designed to give a spectral reflectance at 400 nm. The PECVD silicon-nitride layers were initially
characterized, and the data was used for the optical and mechanical design of the airgap filters.
A CMOS compatible process based on polysilicon sacrificial layers was used for the fabrication
of the membranes. Optical characterization results are presented.

1. Introduction
Optical interference filters based on a stack of alternating layers of two dielectric materials of
different index of refraction provide significant potential for system integration of optical MEMS
devices, such as microspectrometers and LEDs [1]. The availability of dielectric materials for the
fabrication of an optical filter operating in the ultraviolet (UV) and visible range is, however,
limited by several constraints. The most important limitation is the presence of absorption peaks
of many common dielectric materials in the UV. CMOS process compatibility requirements
further limit the list of materials that can be used for the fabrication of an optical filter. Using
airgap-based interference filters provide a MEMS-compatible solution for the fabrication of high-
performance optical filters in a CMOS-compatible fashion. Although UV and visible airgap-
based optical filters using III-V materials have been investigated for LEDs [1], the silicon-based
UV and visible MEMS airgap filters have only recently received attention [2].
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The main challenge in the fabrication of airgap optical filters is maintaining optical flatness
over the freestanding membrane [3]. Therefore, a tensile stressed membrane is required, while the
stress gradient in the film has to be sufficiently low [3]. Filters composed of one or several layers
with a thickness in the order of one Quarter-Wave Optical Thickness at the design wavelength (1
QWOT) have been considered, but it is extremely difficult to achieve a sufficient level of tensile
stress without a stress gradient in such a thin layer (i.e. λo/4n, where n is the refractive index
of the material; 70 nm for λo = 400 nm and n ≈ 1.5) for a taut membrane without rupturing.
Straining methods have been investigated to obtain optical flatness in silicon-oxide membranes,
however, only a limited improvement was achieved [4].

An alternative approach is to use high Young’s modulus materials, such as polysilicon and
silicon-nitride, for the membrane material. Furthermore, the filters are composed of several
layers with thicknesses in the order of multiples of the quarter-wavelength. The interference
condition in the filters is generally satisfied by using (odd n) higher order designs (n-QWOT),
thus thicker membranes could be considered, which would result in a similar spectral response.

The fabrication process and the preliminary results of ultrathin silicon-nitride membranes for
airgap optical filter application have been investigated. Silicon-nitride thin-films were deposited
using PECVD and subsequently annealed to obtain tensile stress. The residual stress and optical
properties of the deposited thin films were characterized, and the results are presented in this
paper. One-period (N = 1) airgap optical filters operating at 400 nm based on 1 QWOT and
3 QWOT silicon-nitride membrane were designed. The fabrication was carried out based on a
CMOS-compatible fabrication process followed by a stiction-free drying process. Finally, the
fabricated samples were optically characterized, and the results are discussed.

2. PECVD silicon-nitride as the membrane material in airgap optical filters
The excellent mechanical properties of silicon-nitride made it a suitable candidate for use in
most MEMS devices. The Young’s modulus of Silicon-nitride is about 200 GPa for the films
deposited using PECVD [5]. This Young’s modulus is significantly higher than the reported
value for silicon-oxide (70 GPa [6]). The deformation energy and force in a membrane is inversely
proportional to the Young’s modulus of the film. Therefore, using silicon-nitride results in a
decrease in membrane deformation, hence improving the flatness of the released membrane. In
addition, the PECVD deposition of silicon-nitride films provides several advantages, such as the
ability to tune the residual stress and optical properties of the deposited films. Therefore, the
residual stress of the silicon-nitride can be tuned to obtain tensile stress films [5]. Finally, the
etch rate of silicon-nitride in TMAH is very low [7], thus, can be used as a membrane material
in combination with polysilicon sacrificial layers.

Table 1. Deposition parameters of PECVD silicon-nitride
SiH4 0.28 slm
NH3 1.8 slm
N2 1 slm
HF/LF power 0.32/0.48 kW
Substrate Temperature 400 ◦C
Total pressure 2.8 Torr

In this research, the silicon-nitride films were deposited using PECVD and the deposition
parameters are listed in Table 1. While the as-deposited residual stress of silicon-nitride films
was measured to be equal to −200 MPa (compressive), the residual stress was increased to
about 1 GPa (tensile) after an annealing cycle at 600◦C. This high tensile residual stress
further ensures the flatness in the released membranes.

27th Micromechanics and Microsystems Europe Workshop IOP Publishing
Journal of Physics: Conference Series 757 (2016) 012032 doi:10.1088/1742-6596/757/1/012032

2



3. Optical design
3.1. Optical characterization of silicon-nitride
The optical properties of silicon nitride layers have been extensively studied (e.g. [8, 9]). In
PECVD silicon-nitride layers, the gas phase composition of the plasma affects the silicon-to-
nitrogen (Si/N) ratio in the films. As a result, the refractive index of the films varies linearly
from 1.9 to 2.6 with an increasing Si content of the film (Si/N ratio from 0.7 to 1.7) [9]. Therefore,
films with high refractive index can be deposited. The quality of the material combination used
in a filter design is usually expressed in terms of their refractive index contrast. Therefore,
silicon-rich nitride is in principle highly suitable for optical applications. However, the increased
absorption of silicon-rich nitride is a limiting factor in optical applications. Increasing the
silicon content in the deposited films results in a spectral shift of the absorption peak in the film
toward the longer wavelengths. For instance, the absorption coefficient becomes significant (is
higher than α = 103cm−1) for stoichiometric Si3N4 for wavelengths shorter than about 270 nm
(k = 0.002), while this limit increases to 800 nm (k = 0.006) for silicon-rich Si9N4 [8]. Therefore,
the trade-off between the refractive index and absorption coefficient must be considered when
designing a nitride-based interference optical filter.

The refractive index and extinction coefficient of the deposited nitride layer were measured
using ellipsometry. Figure 1 shows the refractive index and absorption coefficient of the films.
Although the extinction coefficient of the deposited silicon-nitride at 400 nm is significant
(k = 0.06), the nitride-based designs are still highly interesting. This stems from the higher
refractive index of silicon-nitride, as compared to the silicon-oxide, while the loss in one QWOT
layers remains limited to 1 − exp(−αd) = 0.08. The refractive index contrast ((n2H − n2L)/2n2H ;
a unitless quality factor between 0 and 0.5) is an important criterion for assessment of the
thin films for the optical applications. The higher refractive index of nitride results in a
considerable increase in the refractive index contrast (i.e. 43% increase in refractive index
contrast as compared to the silicon-oxide with air pair). Furthermore, due to the high refractive
index of silicon nitride, a QWOT of silicon-nitride is thinner, thus, the intensity loss due to the
absorption is smaller.

Figure 1. The refractive index and extinction
coefficient of PECVD silicon nitride thin-films
measured by Ellipsometry.

Figure 2. Expected reflectance of a single
period (N = 1) DBR with 1 QWOT
and 3 QWOT membrane simulated using
transfer matrix method. The model is
based on a silicon (substrate)/silicon-oxide
(passivation)/airgap/silicon-nitride structure.
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3.2. Optical design of a distributed Bragg grating
A distributed Bragg reflector (DBR) is one of the simplest forms of an optical filter and is
composed of a repetitive and alternating high and low index quarter-wave thick layers. In
general, any layer with a thickness equal to the odd-multiple of the quarter-wave also satisfies
the interference condition and results in a similar spectral reflectance. In this research single
period (N = 1) DBRs with single-quarter (1 QWOT) and three-quarter-wave thick (3 QWOT)
layers, have been designed. Figure 2 shows the expected reflectance of the DBRs simulated using
transfer matrix method (TFCalc).

As shown in Figure 2, a 1 QWOT membrane separated by a 1 QWOT airgap result in a peak
reflectance of about 82% with a bandwidth of 192 nm. The 3 QWOT membrane separated by
1 QWOT airgap design, on the other hand, results in a peak reflectance of 72% and bandwidth
of 121 nm. The reduced peak reflectance in the 3 QWOT design is due to the increase in the
spectral absorption in the thicker membrane layer. Therefore, the 3 QWOT membranes are not
very suitable for optical designs, especially when multiple periods of high and low index layers
are required.

4. Fabrication
A CMOS-compatible process for fabrication of free-standing silicon-oxide membranes using
polysilicon sacrificial layers was already introduced by our group [2, 10]. A similar fabrication
process was used for the fabrication of silicon-nitride membranes. The fabrication was performed
on prime 10 cm diameter silicon wafers. Figure 3 shows the schematic of the fabrication process.
A repetitive deposition of LPCVD polysilicon and PECVD silicon-nitride was performed to build
the layer stack according to the optical design. Polysilicon layers are used as the sacrificial layers,
thus the thickness was chosen equal to the thickness of the airgap layers. After the deposition
of the layer stack, a set of openings was patterned and etched through the deposited layers. An
additional silicon nitride layer was deposited using PECVD to cover the openings. The reminder
of this layer is then removed, leaving pin-shaped structures for anchoring the membranes after
the release. A final patterning and etching of windows provide access for the sacrificial etching.
Finally, wet etching in a TMAH-based solution followed by a stiction-free drying using CO2 at
its critical point was used to release the structures.

Figure 3. Schematics of the fabrication process.

5. Characterization
Several samples were partially under-etched and went through the critical point drying process.
The etching was stopped before the complete removal of the sacrificial material to find out the
maximum achievable membrane size, while maintaining a high yield. Figure 4a and 5a show the
microscope images of the released samples. The fabricated 1 QWOT and 3 QWOT membranes
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have a diameter-to-thickness ratio of about 500 and 150 respectively. Figure 4b and 5b show
the show the 45◦ tilted SEM images of the partially released membranes.

Figure 4. The 1 QWOT silicon nitride membrane separated by a 1 QWOT airgap: a)
microscope image, the scale shown in the figure is 25 µm; b) 45◦ degree tilted SEM micrograph
of a circular opening used for the sacrificial etching.

Figure 5. The 3 QWOT silicon nitride membrane separated by a 1 QWOT airgap: a)
microscope image, the scale shown in the figure is 25 µm; b) 45◦ degree tilted SEM micrograph
of a circular opening used for the sacrificial etching.

The spectral reflectance of the released samples was measured using a reflection probe with
a core diameter of 200 µm. The input fibre channel was coupled to a white light source, and the
output was fed to a spectrometer module (Flame, Ocean optics). The samples were placed about
1−2 mm far from the fibre probe tip. Figures 6 a and b show the spectral reflectance of samples
with a 1 QWOT and 3 QWOT silicon-nitride membrane over an area of about 2− 3 mm2. Due
to the large inspection area, several 100-s of filter elements are simultaneously illuminated, and
the measured spectral reflectance is a combination of the spectral response from the released and
the unreleased areas, while the posts and access holes are accounted for in the device area fill
factor. The spectral reflectance reveals a peak at 400 nm, which is associated with the released
membranes (about 90% fill factor), is present in Figure 6. Furthermore, the peak at longer
wavelengths (about 600 nm) is due to the part of the area with the unreleased structures and is
an indication of fabrication yield. An increase in the released area results in an increasing peak
at 400 nm, while the peak at 600 nm decreases.
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Figure 6. The large area spectral reflectance of a) the 1 QWOT membrane design and b) the
3 QWOT design.

6. Conclusion
In this paper, we present the design, fabrication, and preliminary results on several 1 QWOT
and 3 QWOT membranes. Silicon-nitride is a suitable candidate for the large area free-standing
membranes. Although silicon-nitride has many advantages, such as the high Young’s modulus,
ability to obtain a tensile stress, and high refractive index, the main disadvantage is its high
extinction coefficient in the UV spectral range. Silicon-nitride films were deposited using PECVD
and the mechanical and optical characteristics of the films were measured. A tensile stress of
1 GPa was achieved through annealing of the layer. Although the absorption coefficient in the
deposited layers cannot be disregarded, a good spectral response can be achieved due to the
high refractive index of the layers. The measured spectral reflection was also in good agreement
with the expected response. On-going work is directed towards the fabrication advanced optical
filters with higher periods (N > 1) and compound silicon-nitride/silicon-oxide membranes.
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