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Abstract. The traditional procedure followed by winemakers for monitoring grape must 

fermentation is not automated, has not enough accuracy or has only been tested in discrete 

must samples. In order to contribute to the automation and improvement of the wine 

fermentation process, we have designed an AlN-based piezoelectric microresonator, serving 

as a density sensor and being excited in the 4th-order roof tile-shaped vibration mode. 

Furthermore, conditioning circuits were designed to convert the one-port impedance of the 

resonator into a resonant two-port transfer function. This allowed us to design a Phase Locked 

Loop-based oscillator circuit, implemented with a commercial lock-in amplifier with an 

oscillation frequency determined by the vibrating mode. We were capable of measuring the 

fermentation kinetics by both tracking the resonance frequency and by determining the 

quality factor measurements of the microresonator. Moreover, the resonator was calibrated 

with an artificial model solution of grape must and then applied for the monitoring of real 

grape must fermentation. Our results demonstrate the high potential of MEMS resonators to 

detect the decrease in sugar and the increase in ethanol concentrations during the grape must 

fermentation with a resolution of 100 μg/ml and a sensitivity of 0.16 Hz/μg/ml as upper 

limits. 

1. Introduction 

The fermentation of grape must involves the interaction between yeasts, bacteria, fungi and viruses. 

A correct bio-chemical process is a necessary condition but not sufficient by itself to determine the 

final quality of the wine, whose assessment relies on a comprehensive analysis of its chemical 

components, as the basic flavour of wine depends on at least 20 compounds [1]. Therefore, 

winemakers must carefully supervise the wine fermentation process to ensure a wine of the expected 

quality. One of the key parameters monitored during wine fermentation is the fermentation kinetics. 

This provides essential information about the steady transformation of grape must into wine due to 

the decrease of glucose and fructose that leads to the formation of ethanol, glycerol and carbon 

dioxide along with biomass, as a result of yeast metabolism [2]. This process is traditionally 

monitored by enologists, who manually extract and analyse discrete samples at least twice a day 
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using an aerometer, spectrophotometer or a colorimeter. They essentially determine the density and 

its rate of change since these parameters provide information about the evolution of the fermentation 

as a result of yeast metabolism.  

However, there are different ways for monitoring the grape must fermentation: (1) density 

determination, based either on differential pressure measurements [3] or on the use of flexural 

oscillators [4]; (2) monitoring of CO2 released during the process due to the gradual loss of mass 

[3,5]; (3) determination of yeast cell population evolution by means of impedance techniques [6] and 

turbidity measurements [7]; (4) ultrasound measurements conducted to determine the propagation 

velocity in grape musts [8,9]; (5) refractive techniques based on fiber optics [10]; (6) optoelectronic 

device based on measurements of the refractive index [11,12]. 

Overall, these different approaches have not enough resolution or have only been tested in discrete 

must samples. In this context, the simultaneous determination of the density and viscosity of liquids, 

through measurement of the resonant frequency (fr) and quality factor (Q-factor) of a mechanical 

resonator, has already been reported [13–15]. This approach presents several advantages with respect 

to traditional methods, such as real-time analysis, on-line configuration and low liquid volumes. 

Piezoelectric resonators with in-plane vibration modes [16], flexural and torsional modes [17] have 

already been tested. However, it is well-established that a different family, such as the roof tile-shape 

modes, present better quality factors at moderate frequencies [18,19]. The present work evaluates the 

performance of this vibration mode, within micromachined self-actuated and self-sensing aluminium 

nitride (AlN)-based cantilever sensor for the monitoring of grape must fermentation. 

2. Resonator design and characterization 

The resonator was designed for the 4th order roof-tile shaped vibration mode. It resulted in a 

cantilever resonator with optimized electrode layout featuring five nodal lines in one direction, and 1 

nodal line in the perpendicular direction. Considering Leissa’s nomenclature, the vibration mode is 

named as 15-mode [20]. The resonator was designed with a length of L=2524 µm, width of W=1274 

µm and thickness T of about 20 µm. It was fabricated from a SOI wafer with a 20 μm-thick device 

layer covered with a 650 nm-thin AlN piezoelectric film [21]. The top metallization has four striped 

electrodes that allow a selective excitation of the vibration modes and act as a filter for higher modes 

[17]. The considered modal shape and the fabricated resonator are shown in figure 1. 

 

 
Figure 1. (a) Top-view micrograph of the resonator. (b) 

Modal shape measured (15-mode) with a laser Doppler 

vibrometer. (c) The resonator is packaged, wire bonded 

in a 24-pin DIP (dual inline package) and immersed in 

grape must. 
 

3. PLL-Based oscillator  

The simultaneous determination of density and viscosity of liquids, through measurement of the 

resonant frequency and the quality factor of a mechanical resonator, is challenging due to the low 

quality factors and parasitic effects present in liquid media [22]. For this reason, our approach is 

based on roof tile-shaped resonators in two-port configuration and a parasitic compensating device.  
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In the two-port scheme, one of the electrodes was used for actuation (+) and the other for sensing 

(-) (see Figure 1). However, our results show that a capacitive crosstalk across the actuation and 

sensing ports has a significant contribution to the output current.  

To minimize this parasitic component, a compensating device was introduced. This dummy 

device reproduces the structure of the resonator, but without the backside release, thus preventing any 

vibration. For this reason, we designed an interface circuit, used in a previous work [15], to subtract 

the dummy response (vdum) from that of the resonator (vres). Since the materials and dimensions in the 

dummy and resonator devices are the same, they are expected to show identical electrical behaviour 

with respect to their parasitic effects. This results in a clear resonance, with low baseline (see Figure 

2). However, a phase shift (about -12º) is introduced by the instrumentation amplifier, representing 

the differences in electrical performance between the dummy, the resonator device and Cft.  

 

 
Figure 2. Open loop response for the 15-mode measured in a liquid test (2-Propanol) with and 

without the dummy compensation. 

 

In order to avoid this issue, the resonators were finally included in an oscillator based on a Phase 

Locked Loop (PLL) instrument, instead of an oscillator circuit based on discrete components [15]. 

The phase shift was compensated by the PLL configuration, so that the oscillation frequency and the 

natural frequency of the resonator are approximately equal.  The PLL instrument used (Zurich 

HF2LI) provides software-based voltage controlled oscillator (VCO), proportional-integral controller 

(PI) and phase detector (PD) blocks that form a control system able to track the resonant frequency. 

 

4. Experimental details 

With the goal of estimating the density (ρ) and viscosity (μ), thus being able to monitor the 

fermentation process, two variables were measured from our interface circuit: the oscillation 

frequency (fosc) and the gain of the interface circuit module at operation (Gosc), given by the ratio 

Vout/Vin. Furthermore, for the application of the resonator as a density-viscosity sensor, a calibration 

procedure was developed with a model solution of artificial grape must [19] and finally applied to the 

monitoring of one model sluggish fermentation and other real grape must fermentation process. This 

calibration process was carried out in two steps, each with adjustable parameters [15].  

 

4.1. Preparation of the model solutions of grape must 

In order to confirm that piezoelectric resonators are valid for the monitoring of grape must 

fermentation, two different sets of model solutions were used for pre-investigation purposes. The first 

set represents a normal fermentation (N1:N9) and the second represents a sluggish fermentation 

(S1:S9). A variety of reasons may be attributable to this kind of failed or sluggish fermentations, 

which occasionally occur: the lack of dissolved oxygen, an unbalanced ratio between sugar and 

nitrogen, a low fermentation temperature, an inadequate rehydration, a thermal shock of yeast, etc. 

[23]. These model solutions represent different stages of the corresponding fermentation process 
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according to their particular mixture of glucose, fructose, ethanol and glycerol dissolved in water. 

The composition of the prepared model solutions for a normal and sluggish fermentation is shown in 

a previous work [11]. In the normal model solution, a decrease in fructose and glucose concentration 

from 110&100 g/l (N1) to 2&1 g/l (N9) occurs. Similarly, the glycerol and ethanol concentration are 

increasing from zero to 9 g/l and 14 % v/v. In the sluggish fermentation the decrease in fructose and 

glucose concentration stops prematurely and settles around 55 and 20 g/l. Along with this 

development the increase in the ethanol concentration stops and does not exceed the value of 8 % 

v/v.  

 

4.2. Calibration process with model solutions of grape must 

With the aim of monitoring one real grape must fermentation, two different sets of model solutions 

were prepared in the previous section. The first set represents a normal fermentation (N1:N9) and was 

used as a model for the calibration process. The validation of this process was confirmed with a 

model sluggish fermentation (S1:S9) and finally with a real grape must fermentation (Section 4.4). 

In the first step of the calibration process a constant Kic, which is not affected by the loading 

conditions of the resonator, was used to transform the circuit outputs fosc and Gosc into the key 

parameters of the resonator, namely the resonant frequency (fr) and the quality factor (Q-factor).   

Due to the high sensitivity of the density and viscosity to the temperature and electronic noise 

from surrounding equipment at different frequencies, low, but measurable drift effects are present 

when determining fr and Q-factor. The random uncertainty of fr was obtained directly through the 

Allan deviation of fosc [24]. However, the random uncertainty of Gosc was translated into random 

uncertainty of Q-factor by uncertainty propagation [25]. The random uncertainties or resolutions 

obtained for the model solutions of grape must were below 100 mHz for fr and 0.7 for Q-factor. 

Figure 4 shows the mean values of fr and Q-factor when the resonator is immersed in the model 

solutions of grape must: normal and sluggish fermentation process. The measurements of fr and Q-

factor were performed with a temperature control unit [15]. Nevertheless, the impact of temperature 

fluctuations in the resolution of the sensor during the measurement process is minimal compared with 

the continuous evolution of the real grape must fermentation. As can be seen in figure 3, the 

significant changes in the composition of the model solutions affects the fr and the Q-factor of the 

resonator. The combination of unfermented sugars and less than expected ethanol concentration, 

resulted into a flat curve of fr for the sluggish fermentation. 

 

 
Figure 3. Resonant frequency and quality factor of the resonator immersed in two model solutions of 

grape must at 20°C. 

 

In the second step of the calibration procedure, the physical properties of the liquid, density and 

viscosity, were obtained from the key parameters of the resonator, fr and Q-factor. These are related 

to the mechanical properties of the resonators, i.e. resonator equivalent mass (m) and natural 

frequency in vacuum (f0,vac), and the fluid conditions, i.e. distributed damping associated to the liquid 
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(g1) and the distributed equivalent added mass (g2), both per unit length (L). A model defined in 

previous works [26–28] allows the determination of these variables separately. Nevertheless, the 

dependence of g1 and g2 on the viscosity and density of the fluid, as a closed-form analytical 

expression, is only available for simple geometries and particular cases [29]. For this reason, we used 

a Taylor series expansion of g1 and g2 in terms of the viscosity, density and their product [30,31]. The 

model was solved iteratively to obtain the values of the coefficients (Table 1) that fit best to the 

experimental data for the normal model solution. The results of the density estimated values (MEMS) 

are compared to those measured from the density-viscosity meter Anton Paar DMA4100M 

(viscometer) at 20ºC in figure 4.  

 

Table 1. Values of the coefficients obtained in the calibration process for the normal model solution. 

 

 
Kic  C1  C2  C3  C4  

Normal model solution 3.58·10-10 0.12 -20.99 2.11 -103.22 

 

 
Figure 4. Density values estimated from our resonator (MEMS) and measured with a commercial 

density-viscosity meter (viscometer) at 20ºC for the two model solutions: normal and sluggish 

fermentation. 

 

As can be seen in figure 4, an almost linear decrease in the density occurs for the normal model 

solution and a premature stop in the density decrease for the sluggish solution. These results show the 

possibility to distinguish between ordinary and sluggish fermentations at an early stage of the 

fermentation process in artificial grape must. 

Once the density and viscosity for each liquid is known, both the error associated with the 

calibration process and the resolution can be determined. The error terms, are calculated as the 

deviation between the values of viscosity and density estimated from our calibration (MEMS) and the 

values measured with the commercial instrument (viscometer), obtaining a mean error term around 

8.3% for the viscosity and 0.38% for the density. The resolutions were obtained from uncertainty 

propagation from fr and Q-factor to density and viscosity, obtaining a value below 500 μg/ml and 

0.017 mPa·s. As the results show, the resolution and the calibration error obtained are better in 

density than in viscosity. This occurs because the Q-factor measurement, which corresponds to the 

measurement of Gosc in the interface circuit, presents a lower resolution. 

 

4.3. Winemaking samples 

In the previous section, the theoretical background for using the density and viscosity as valid 

parameters of the fermentation process was checked. In addition, the performance of the resonator 

was verified and validated with two model solutions of grape must. Nevertheless, our main goal is 
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the monitoring of a real red grape must fermentation process. In this section, there is a brief 

description of the winemaking of Cencibel grape must variety.  

The Cencibel grape must was completed using 25% (w/v) of red grape skin. Afterwards, the must 

was inoculated with 0.2 g/ml of Saccharomyces cerevisiae strain (UCLM S325, Fould-Springer) 

previously rehydrated following the supplier’s guidelines. A cylindrical fermenter (mini-Bioreactor 

Applikon) was filled with 3 L of inoculated must and grape skins, where the temperature was 

controlled at 28ºC.  

The fermentation monitoring was carried out by means of the extraction and analysis of 7 mL-

samples every 5 hours approximately during 6 days. After extraction the samples were centrifuged 

for one minute at 1000 rpm (Universal 32R Hettich) and kept refrigerated until analysis. Once the 

measurements were completed, the samples were kept frozen at -20ºC, in order to stop the evolution 

of the fermentation process. 

In an industrial fermentation process temperature fluctuations would influence to some extent the 

fermentation process and thus the density. Nevertheless, it is the variations that help enologists 

determine the current fermentation status, and whether or not corrective measures are required as it 

progresses. 

 

4.4. Monitoring grape must fermentation  

In order to monitoring one real grape must fermentation, we applied the same procedure that was 

developed for the model sluggish solution. In this case, through the measurements of fosc and Gosc in 

the interface circuit and using the coefficients obtained for the normal model solution (see Table 1), 

we were able to obtain the density and viscosity of the grape must. 

Figure 5 represents the evolution in terms of density and viscosity of one real red wine 

fermentation, measured in the same way as in the previous section. Both density and viscosity follow 

a rather similar trend, as observed previously with the normal model solution. Therefore, it was 

confirmed that the calibration process performed for the normal model solution is also valid for other 

liquids in a similar range of density and viscosity. 

 
Figure 5. Evolution of density and viscosity values estimated from our resonator (MEMS) and 

measured with the commercial density-viscosity meter (viscometer) at 20ºC for a real fermentation 

process. 

 

The error terms and resolutions were calculated as in the previous section. The mean error term 

obtained was around 6% for the viscosity and 0.7% for the density being the viscosity resolution 

below 0.006 mPa·s. In the case of the real grape must the obtained density resolution was below 100 

μg/ml instead of the 1200 μg/ml value obtained in some previous works using a high-resolution low-

cost optoelectronic instrument [11,12].   
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5. Conclusion 

This work presents a novel approach for the monitoring of a grape must fermentation process with a 

piezoelectric MEMS resonator excited in the 4th order of the roof tile-shaped mode. Two important 

parameters of the resonator were measured using a PLL-based oscillator circuit: the quality factor 

and the resonant frequency. Once these two parameters are known, the viscosity and density of the 

liquid can be determined, requiring only a small amount of test liquid of about 100 μl. In order to 

measure the viscosity and density of a real grape must, a calibration procedure of the resonator was 

performed using model solutions of artificial grape must representing an ordinary (for calibration) 

and a stuck or sluggish (for validation) fermentation process and a commercial density-viscosity 

meter. Our results demonstrate the high performance of MEMS resonators to detect the decrease in 

sugar and the increase in ethanol concentrations during the grape must fermentation with a resolution 

of 100 μg/ml and a sensitivity of 0.16 Hz/μg/ml as upper limits. 
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