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Abstract. This paper describes the geometrical properties of the solutions to the total
variation denoising method. A folklore statement is that this method is able to restore sharp
edges, but at the same time, might introduce some staircasing (i.e. “fake” edges) in flat areas.
Quite surprisingly, put aside numerical evidences, almost no theoretical result are available to
backup these claims. The first contribution of this paper is a precise mathematical definition of
the “extended support” (associated to the noise-free image) of TV denoising. This is intuitively
the region which is unstable and will suffer from the staircasing effect. Our main result shows
that the TV denoising method indeed restores a piece-wise constant image outside a small tube
surrounding the extended support. Furthermore, the radius of this tube shrinks toward zero as
the noise level vanishes and in some cases, an upper bound on the convergence rate is given.

1. Introduction
The total variation (TV) denoising method was introduced by Rudin, Osher and Fatemi

in [1]. It is one of the first proposed non-linear image restoration method, and has had an
enormous impact on shaping modern imaging sciences. Despite being quite old, this method
is still routinely used today, and its popularity probably stems from both its simplicity and its
ability to restore “cartoon-looking” images.

Total Variation Denoising The total variation of a function u ∈ L2
(
R2
)

is defined as

J(u)
def.
=

∫
R2

|Du| def.= sup

{∫
R2

u div z ; z ∈ C 1
c (R2,R2), ||z||∞ 6 1

}
. (1)

Given some noisy input function f , following [1], we are interested in the total variation
denoising problem

min
u∈L2(RN )

λJ(u) +
1

2
||u− f ||2L2 . (Pλ(f))

Here, λ > 0 is the regularization parameter, and it should adapted by the user to the noise level.
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In this paper, we present the results of [2], which studies the ability of TV denoising to
restore the geometrical structures (in particular the edges) of some (typically unknown) noise-
free function f by solving Pλ(f + w). Here w accounts for some additive noise in the image
formation process, and is assumed to have a finite L2 norm ||w||L2 .

Level lines in the low noise regime Although it is not very difficult to see that, as λ→ 0+ and
||w||L2 → 0+, the solution uλ,w to Pλ(f + w) converges towards f in the L2 topology, our goal
is to describe this convergence more precisely: is it possible to say that the level lines of uλ,w
converge to those of f? In what sense? Moreover, does the support of Duλ,w converge towards
the support of Df?

1.1. Previous works
Jump sets stability A landmark result in the characterization the structural properties of TV
denoising solutions is [3], which proves that TV regularization does not introduce jumps, i.e.
the “jump set” of the solution of (Pλ(f)) is included in that of the input f . A review of this
result and extensions can be found in [4].

These results are however of little interest when f is replaced by a noisy function f + w,
since the noise w, which is only assumed to be in L2, might introduce jumps everywhere. It is
actually the presence of this noise which is responsible for the “staircasing” effect, which creates
spurious edges in flat area. The present paper aims to fill this theoretical gap by analyzing the
impact of the noise on the gradient support of the solution to Pλ(f +w), when both ||w||L2 and
λ are not too large.

Explicit solutions and calibrable sets Of particular importance for the analysis of TV methods
are indicator functions of sets, and their behavior under the regularization. Indicator functions
which are invariant (up to a rescaling) under TV denoising define the so-called “calibrable” sets.

More precisely, by denoting the perimeter of a set by P (C)
def.
= J(1C) and its Lebesgue measure

by |C|, we say that C ⊂ R2 is a calibrable set if hC1C ∈ ∂J(1C), where hC = P (C)/ |C|; and if
C is a calibrable set, then the solution of Pλ(1C) is uλ,0 = (1−hCλ)+1C . A full characterization
of convex calibrable sets is given in [5]. It was also proved in [5] that if C is a convex set, then
the solution uλ to Pλ(1C) satisfies

{uλ > t} = ∅ if t > 1− λ

R∗
and {uλ > t} = Cλ/(1−t) if 0 6 t 6 1− λ

R∗

where Cr =
⋃
{B(x, r) ; B(x, r) ⊆ C} and CR∗ is the maximal calibrable set in C. Throughout

this paper, B(x, r) denotes the ball of radius r centred at x. In this paper, we shall show
that in the presence of L2 additive noise, calibrable sets play the role of “stable” sets and the
corresponding edges are well restored by TV denoising.

Integral error estimates The systematic study of noise stability of regularization schemes relies
on the so-called source condition [6], which in the simple denoising setting, is the requirement
that the subdifferential of J , ∂J(f), should be non-empty. In the case of total variation
regularization, the subdifferential of J : L2(R2)→ R ∪ {+∞} can be written as follows.

∂J(0) =
{

div z ; z ∈ L∞(R2;R2), div z ∈ L2(R2), ||z||L∞ 6 1
}
,

∂J(u) =

{
v ∈ ∂J(0) ;

∫
R2

uv = J(u)

}
.

For non-smooth regularizations over Banach spaces, stability studies with respect to the
source condition started with the seminal paper of Burger and Osher [7] who show that the
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source condition implies stability of the solution according to the Bregman divergence associated
to J . In particular, if the source condition is satisfied for f ∈ L2(R2) ∩ BV (R2), so that
there exists v = −div z ∈ ∂J(f) 6= ∅, then one has support stability in each region U where
supx∈U |z(x)| < 1. Formally, we say that z is non-degenerate on U and smaller values of
supx∈U |z(x)| will allow for stronger stability bounds. More precisely, it was proved in [7] that
for U ⊂ R2 and δ > 0 such that supx∈U |z(x)| < 1− δ, the solution uλ,w to Pλ(f + w) satisfies

(1− δ)
∫
U
|Duλ,w| 6

||w||2L2

2λ
+
λ||v||2L2

2
+ ||w||L2 ||v||L2 .

We remark however that this result does not lead to a precise geometric characterization
of the TV regularized solutions. In this paper, we shall describe when uλ,w is constant on U
and hence, our analysis can be seen as a generalization and refinement of this source condition
approach.

2. Duality and the minimal norm certificate
We assume for the remainder of this paper that f ∈ L2(R2) and that the source condition

holds. Instead of studying the properties of any element in ∂J(f) as done in [7], we consider
the minimal norm certificate:

v0
def.
= argmin {||v||L2 ; v ∈ ∂J(f)} . (2)

The study of v0 will lead to an understanding of the geometric properties of uλ,w in the low
noise regime, where λ0 > 0, α0 > 0, (λ,w) ∈ Dλ0,α0 and

Dλ0,α0

def.
=
{

(λ,w) ∈ R+ × L2
(
R2
)

; 0 6 λ 6 λ0 and ||w||L2 6 α0λ
}
. (3)

This particular element v0 naturally arises from the dual problems associated with (Pλ(f)),
which we now describe. The Fenchel-Rockafellar dual problem of (Pλ(f)) is

sup
v∈∂J(0)

〈f, v〉 − 1

2λ
||v||2L2 , (D′λ(f))

or equivalently inf
v∈∂J(0)

||f
λ
− v||2L2 (Dλ(f))

We remark that since the solution vλ,w to (Dλ(f + w)) is simply the projection of f/λ onto a
convex set, vλ,w exists and is unique. Furthermore, there is strong duality.

The limit of (Pλ(f)) as λ→ 0+ is the trivial problem

min
u∈L2(R2)∩BV (R2)

J(u) s.t. u = f, (P0(f))

having u = f as the solution. The dual is

sup
v∈∂J(0)

〈f, v〉, (D0(f))

with solutions ∂J(f). Again, there is strong duality, although there is no guarantee of uniqueness
or existence of solutions to (D0(f)) as it is possible that ∂J(f) = ∅. Note that since the dual
solution vλ,w of (Dλ(f+w)) is the projection of (f+w)/λ onto a convex set, the non-expansiveness
of the projection yields

∀(λ,w) ∈ R∗+ × L2
(
R2
)
, ||vλ,0 − vλ,w||L2 6

||w||L2

λ
6 α0.

As a result, the properties of vλ,w are governed by those of vλ,0, and it turns out that the
properties of vλ,0 are governed, in the low noise regime, by those of the minimal L2 norm
solution to (D0(f)), as the next result hints.
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Proposition 1. [2] If the source condition holds, then limλ→0 ||vλ,0 − v0||L2 = 0 where v0, the
minimal norm certificate is defined as in (2).

The main point in studying the dual problems is that their solutions vλ,w are related to the
primal solutions uλ,w by the extremality relations

vλ,w ∈ ∂J(uλ,w), vλ,w =
1

λ
(f − uλ,w),

which makes possible the analysis of the support of Duλ,w, as described by the following
proposition. The intuition behind our study of the minimal norm certificate is that when vλ,w
is close to v0, the support of Duλ,w will be governed by v0.

Proposition 2 ([2]). Let f, v ∈ L2(R2). For t > 0, let F (t) def.
= {f > t} and for t < 0, let

F (t) def.
= {f 6 t}. The following hold.

(i) v ∈ ∂J(f) if and only if v ∈ ∂J(0) and the level sets of f satisfy

∀t > 0, P (F (t)) =

∫
F (t)

v, ∀t < 0, P (F (t)) = −
∫
F (t)

v.

(ii) Supp(Df) =
⋃{

∂∗F (t) ; t ∈ R \ {0}
}
⊆
⋃{

∂∗F ; |F | < +∞ and P (F ) = ±
∫
F v
}
.

Examples of minimal norm certificates

• If C is a calibrable set, then v0 = hC1C .

• If C is a convex set such that ∂C is of class C1,1 and ess supp κ∂C(p) 6 c for some c > 0, then
there exists some R∗ such that CR∗ (as defined in Section 1.1) is the maximal calibrable set
inside C. In this case, v0(x) = 1/r for x ∈ ∂Cr and r ∈ [0, R∗] and v0(x) = 0 otherwise.

3. Support stability
In this section, we first define the extended support and state our main result.

3.1. The extended support
Motivated by Proposition 2, the extended support of f ∈ L2(R2) with respect to its minimal

norm certificate v0 is defined as follows.

Definition 1.

Ext(Df)
def.
=
⋃
{supp(Dg) ; v0 ∈ ∂J(g)} =

⋃{
∂∗E ; |E| <∞, ±

∫
E
v0 = P (E)

}
.

Examples of the extended support

• If C is a calibrable set, then Ext(D1C) = ∂C.

• If C is a smooth convex set, then Ext(D1C) = C \ int(CR∗), where CR∗ is the maximal
calibrable set inside C.

1A Ext(D1A) 1B Ext(D1B)
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3.2. Main result
We are now ready to present our main result which relates support stability to the extended

support.

Theorem 1. [2] As λ→ 0 and ||w||L2/λ→ 0,

sup
x∈supp(Df)

dist(x, supp(Duλ,w))→ 0, sup
x∈supp(Duλ,w)

dist(x,ExtDf)→ 0,

Furthermore, by denoting by U
(t)
λ,w the level sets of uλ,w, for almost every t ∈ R, as λ → 0 and

||w||L2/λ→ 0, ∣∣∣U (t)
λ,w∆F (t)

∣∣∣→ 0, and lim
n→+∞

∂U
(t)
λ,w → ∂F (t),

and the last equality holds in the sense of Hausdorff convergence.

Remark 1. The first part of the theorem above implies that for all r > 0, there exists λr and αr
such that for all (λ, r) ∈ Dλr,αr , Supp(Duλ,w) ⊆ Tr

def.
=
{
x ∈ R2 ; dist(x,Ext(Df)) 6 r

}
, and

Supp(Df) ⊆
{
x ∈ R2 ; dist(x, Supp(Duλ,w)) 6 r

}
. Thus, one can always define an arbitrarily

small tube Tr around the extended support such that uλ,w is constant outside Tr for all (λ,w)
in some low noise regime.

3.3. Rate of convergence
By definition of v0, there exists some vector field z0 ∈ L∞(R2;R2) such that v0 = −div z0

and ||z0||L∞ 6 1. This vector field is not unique and our main result is not dependent on its
behaviour. However, our next result shows that when the non-degeneracy of z0 is known (as
described in Section 1.1), we can make explicit the relationship between the width of the tube
Tr, the decay of ||vλ,w − v0,0||L2 and the nondegeneracy of z0. Assume now that for all r > 0,
there exists δr > 0 such that

1− δr = ess sup
x6∈Tr
|z0(x)| . (4)

Theorem 2. [2] If λ > 0 and w ∈ L2(R2) is such that ||vλ,w − v0||L2 6 δr/2 min{r/(2C), 2
√
π},

then Supp(Duλ,w) ⊂ Tr.

Remark 2. Let us remark on the condition (4). As a result of the constructions described in
[8], if C is a calibrable set, then the vector field z0 of minimal norm certificate associated with
1C is such that every K ⊂ C compact, supK |z0| < 1. Furthermore, we can show [2] that for a
convex set C with C 2 boundary, |z0(s, r)| . min{1− κ∂C(s)r, 1− r2} outside C.

Example: If f = 1B(0,R) and ||w||L2 6 λr2/(8R2), then supp(Duλ,w) ⊂ Tr.

4. Numerical examples of the extended support
Figure 1 presents some numerical examples of denoised solutions, the extended support and

the vector field z0 associated with several indicator functions of sets. These examples are
computed by solving the dual problem (Dλ(f)) using the projected gradient descent algorithm
of [9].
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Original f Input f + w Solution uλ,w Ext(Df) |z0|

Figure 1: The level lines of each denoised solution are shown in blue. The extended support for
each indicator function is shown in gray, and the absolute value of the associated vector field
is shown such that white corresponds to one and black corresponds to zero. Observe that the
decay of the vector field is linked to the curvature of the boundary as suggested by our remark
in the previous section.

5. Conclusion
Our main result shows that although the support of TV regularized solutions are in general

not stable and staircasing effects can be introduced, in the low noise regime, the instabilities are
confined to a small neighbourhood of the extended support. Furthermore, for the indicator set of
a calibrable set C, the support of TV regularized solutions cluster around ∂C. Finally, although
the situation where the source condition is not satisfied was not discussed in the present paper,
our approach can be extended to characterize the support stability for various functions without
the source condition, such as 1[0,1]2 (see [2] for details).
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