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Abstract. Electrical impedance tomography under spectral constraints uses a material basis 

decomposition to combine the different information embedded in the tissue spectra. This 

approach offers an alternative to static imaging while benefiting from systemic error 

cancellation using difference data. It suits well cases where no prior solution is known and the 

contrast lies entirely between frequencies, e.g. to diagnose acute stroke or cancer. In this work, 

a computational framework is presented to deal with the extra frequency dimensions and the 

constraints during reconstruction. A fraction volume approach is demonstrated with explicit 

Euclidean gradient, usage of a finite volume element solver and minimization over the oblique 

manifold. It is applied to synthetic data. Parameter estimations are compared between a mono-

frequency inversion and the proposed multispectral implementation. Results suggest that the 

proposed workflow enables to reduce the computational workload of multispectral inversion 

while ensuring valid proportions of materials within each control volume.  

1. Introduction  

Medical electrical impedance tomography (EIT) is a soft-field, non-invasive imaging technique. The 

setting of EIT consists in reconstructing internal electrical property distributions (conductivity 𝜎 and 

permittivity 𝜀) from current and voltage boundary measurements at specific frequencies 𝜔. The ill-

posed EIT inverse problem limits the applications of static imaging, i.e. the deduction of quantitative 

conductivity maps. Besides, most EIT clinical applications currently use time difference imaging 

(tdEIT), e.g. in continuous pulmonary and brain function monitoring. It assumes variations of the 

conductivity distribution along with time, and estimates the parameter changes between two states [1].  

The spectral signature of materials may also be used as a source of contrast in frequency difference 

imaging (fdEIT). This scheme could allow for the imaging without knowledge of a prior condition. It 

opens application areas in acute stroke, brain injury and cancer screening. However, while tdEIT 

enables systematic artefact reduction, fdEIT still suffers from strong noise amplification and cannot 

cope with modelling errors. This significantly reduces the fdEIT range of application [2].  

To include frequency information in the image reconstruction process, spectrally constrained EIT 

(scEIT) has recently been introduced [3]. scEIT then stands as an alternative to static EIT while 

featuring the advantages of difference imaging techniques. The aim is to reduce the ill-conditioning of 

the inverse problem. scEIT makes use of a material basis decomposition: the conductivity of a control 
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volume is a linear combination of known tissue conductivities. The reconstruction then focuses on the 

proportion values of individual tissues within the imaging domain.  

Since material proportions are frequency independent, multi-frequency data can be used directly. 

This contributes to reducing the degrees of freedom of the inversion problem, as long as the number of 

frequencies exceeds the number of tissues. Further, the knowledge of the tissue spectra enables using 

difference data in the objective function. Modelling and frequency independent instrumentation errors 

are mitigated in a nonlinear reconstruction scheme.  

The drawbacks of the present approach is the computational workload. The iterative nonlinear 

inversion workflow involves solving the forward problem, calculating the multi-frequency Jacobian 

matrix and computing the update step several times. Constraints over proportions have also to be taken 

into account: they are positive and sum to one for each control volume.  

In order to optimize the scEIT imaging method, we propose here a numerical framework based on 

the joint use of a finite volume element (FVE) forward solver and an optimization on a manifold for 

the quantitative parameter estimation. FVE brings a model reduction capability compared to finite 

element methods (FEM) without loss of information [4]. Further, the minimization of the objective 

function is performed over the oblique manifold to efficiently handle the constraints over proportions 

[5]. This approach standardizes the integration of spectral constraints. It offers a way to reduce the 

computational complexity of multi-frequency imaging.  

Once the notations of the proportion mixing and the cost functions are fixed, the explicit Euclidean 

gradient is derived. The methodology of the minimization of the cost function over the oblique 

manifold is then detailed. Reconstructions over synthetic data are compared between mono-frequency 

static imaging and the proposed multispectral workflow.  

2. Methods  

2.1. Material basis: proportion mixing  

The parameter estimation under special constraints considers the medium as a mixing model: (i) it is 

composed of a known number of tissues 𝑡 = 1 … 𝑇; (ii) the conductivity spectrum 𝑠 of each tissue is 

assumed to be known at all frequencies 𝑓 = 0 … 𝑁𝑓 of measurements: 𝑠𝑓𝑡 = 𝜎(𝜔𝑓 , 𝑡); (iii) the 

conductivity of the kth control volume 𝑘 = 1 … 𝑁 is fixed by a linear combination of the proportions 

𝑝𝑘𝑡 of the different components, equation (1).  

 σk(𝜔𝑓) = ∑ 𝑝𝑘𝑡𝑠𝑓𝑡𝑡      𝑠. 𝑡.     
0 ≤ 𝑝𝑘𝑡 ≤ 1
∑ 𝑝𝑘𝑡𝑡 = 1

 (1) 

Proportions of a tissue 𝑡 are gathered under the vector 𝐩𝑡 ∈ ℝ𝑁×1 and considering all tissues in the 

matrix 𝐏 = [𝐩1 … 𝐩𝑇] ∈ ℝ𝑁×𝑇. In the same way, conductivities are gathered for a frequency 𝑓 in the 

vector 𝛔𝑓 = 𝜎(𝜔𝑓) ∈ ℝ𝑁×1 and in the matrix 𝚺 = [𝛔0 … 𝛔𝑁𝑓
] ∈ ℝ𝑁×(𝑁𝑓+1) for multi-frequency 

considerations. The mixing model of equation (1) is then expressed as 𝚺 = 𝐏𝐒𝑇. The conductivity at a 

frequency 𝑓 is deduced by 𝛔𝑓 = 𝐏𝐬𝑓:, with 𝐒 = [𝐬0:
𝑇 … 𝐬𝑁𝑓:

𝑇 ]
𝑻

∈ ℝ(𝑁𝑓+1)×𝑇. Computing derivatives 

then makes use of the chain rule and includes the standard Jacobian matrix 𝐉. For instance, the 

derivative of the predicted data, i.e. the computed measurements 𝐮̃, relative to the proportions values: 
𝜕𝐮̃(𝛔𝑓)

𝜕𝐩𝑡
=

𝜕𝛔𝑓

𝜕𝐩𝑡

𝜕𝐮̃(𝛔𝑓)

𝜕𝛔𝑓
= 𝑠𝑓𝑡𝐉𝑇(𝛔𝑓). In the following, 𝐈𝑛, 𝟎𝑇 and 𝟏𝑛 denote respectively the identity 

matrix, the null vector, and the vector of ones of the specified dimension 𝑛.  

2.2. Cost function  

In scEIT, the cost function Φ(𝐏) is expressed as the weighted sum of a data fit term Φ(𝑑𝑓)(𝐏) and a 

spatial regularisation term Φ(𝑟)(𝐏): Φ(𝐏) = Φ(𝑑𝑓)(𝐏) + 𝛼Φ(𝑟)(𝐏). α is a regularization parameter 

which balances the contribution of each term.  
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The data fit term Φ(𝑑𝑓)(𝐏) =
1

2
∑ ∑ 𝑧𝑚𝑓

2 (𝐏)𝑀
𝑚=1

𝑁𝑓

𝑓=1
 is explained in equation (2). 𝐮(𝜔𝑓) denotes the 

measured voltages at frequency 𝜔𝑓 over all source-detector configurations, indexed by 𝑚 = 1 … 𝑀, 

and 𝜂 a constant independent of proportions.  

 𝑧𝑚𝑓 =
𝑢̃𝑚(𝐏𝐬𝑓:)−𝑢̃𝑚(𝐏𝐬0:)

𝑢̃𝑚(𝐏𝐬0:)
−

𝑢𝑚(𝜔𝑓)−𝑢𝑚(𝜔0)

𝑢𝑚(𝜔0)
=

𝑢̃𝑚(𝐏𝐬𝑓:)

𝑢̃𝑚(𝐏𝐬0:)
+ 𝜂 (1) 

The data fit term takes into account (i) the multi-frequency data, to increase the number of 

constraints and (ii) the normalized difference data, to reduce modelling and instrumentation errors. 𝜔0 

is chosen as the reference frequency.  

2.3. Explicit Euclidean gradient 

The Euclidean gradient of the cost function is now derived explicitly.  

Following the chain rule, 
𝜕Φ(𝑑𝑓)

𝜕𝐏
= ∑

𝜕𝑧𝑚𝑓

𝜕𝐏

𝜕Φ(𝑑𝑓)

𝜕𝑧𝑚𝑓
𝑓 = ∑

𝜕𝑧𝑚𝑓

𝜕𝐏
𝑧𝑚𝑓𝑓 . As a quotient derivative, the 

equation (3) holds, for each control volume 𝑘 and tissue 𝑡.  

 
𝜕𝑧𝑚𝑓

𝜕𝑝𝑘𝑡
=

[𝐉(𝐏𝐬𝑓:)]
𝑚𝑘

𝑠𝑓𝑡𝑢̃𝑚(𝐏𝐬0:)−𝑢̃𝑚(𝐏𝐬𝑓:)[𝐉(𝐏𝐬0:)]𝑚𝑘𝑠0𝑡

𝑢𝑚
2 (𝐏𝐬0:)

 (3) 

This translates into equation (4).  

 [∇Φ(𝑑𝑓)(𝐏)]
𝑡𝑘

= ∑ ∑
[𝐉(𝐏𝐬𝑓:)]

𝑚𝑘
𝑠𝑓𝑡𝑢̃𝑚(𝐏𝐬0:)−𝑢̃𝑚(𝐏𝐬𝑓:)[𝐉(𝐏𝐬0:)]𝑚𝑘𝑠0𝑡

𝑢𝑚
2 (𝐏𝐬0:)

𝑧𝑚𝑓𝑚𝑓  (4) 

To simplify the understanding, the following notations are used: 𝐹 = 𝑁𝑓 − 1, 𝐳 = vec(𝐙) ∈ ℝ𝑀𝐹×1 

𝐬(0) ∈ ℝ1×T, 𝐒(1𝑓) ∈ ℝ𝐹×T, i.e. 𝐒(1𝑓) contains the piled spectra for the frequencies indexed 1 to F 

participating to the reconstructions. 𝐚 ∈ ℝ𝑀×1, 𝐛 ∈ ℝ𝑀𝐹×1, 𝐉(0) and 𝐉(1𝑓) are defined by equation (5).  

 𝑎𝑚 =
1

𝑢̃𝑚(𝐏𝐬0:)
𝐛 = [

𝐛(1)

⋮
𝐛(𝐹)

] 𝑏𝑚
(𝑓)

=
𝑢̃𝑚(𝐏𝐬𝑓:)

𝑢𝑚
2 (𝐏𝐬0:)

 (5) 

 𝐉(1𝑓) = [𝐉𝑇(𝐏𝐬1:) … 𝐉𝑇(𝐏𝐬𝐹:)] ∈ℝ𝑁×𝑀𝐹 𝐉(0) = [𝐉𝑇(𝐏𝐬0:) … 𝐉𝑇(𝐏𝐬0:)] ∈ℝ𝑁×𝑀𝐹  

Using these notations, the Euclidean gradient can be written in a explicit form as in equation (6), 

which is suitable for implementation. ⊗ denotes the Kronecker product.  

 ∇Φ(𝑑𝑓)(𝐏) = 𝐉(1𝑓)diag(𝐳)[𝐒(1𝑓) ⊗ 𝐚] − 𝐉(0)diag(𝐳)[𝐬(0) ⊗ 𝐛] (6) 

2.4. Methodology of inversion under constraints  

The cost function associated with the estimation of the proportions of the different components is 

nonlinear. An optimization over a manifold is used to estimate parameters while imposing the 

constraints on proportions.  

2.4.1. Optimization on the oblique manifold The auxiliary variable 𝑿 = √𝑷𝑇 ∈ ℝ𝑁×𝑇, i.e. 𝑝𝑘𝑡 = 𝑥𝑡𝑘
2 , 

is introduced. It translates the constraints on proportions into ∑ 𝑥𝑡𝑘
2

𝑡 = 1. Following this change of 

variable, it amounts to an optimization under equality constraints, which is seamlessly handled by 

using the oblique manifold ℳ = 𝒪ℬ(𝑁𝑡 , 𝑁𝑒) = {𝑿 ∈ ℝ𝑁×𝑇: (𝑿𝑇𝑿)𝑖𝑖 = 1, 𝑖 = 1: 𝑁} (matrices with 

unitary column), also ensuring positivity of proportions.  

The proportions can be directly estimated within the manifold ℳ. The Matlab® library Manopt, 

dedicated to manifold optimization, is used [6]. The Euclidean gradient of the objective function is 

projected onto ℳ, in order to determine the search direction and to evolve within 𝒪ℬ using the 

concept of retractions.  
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Dedicated functions are implemented in Matlab® to provide the objective function and its 

Euclidean gradient, given an estimation of proportions. The chain rule enables deducing the gradient 

of the objective function relatively to the auxiliary variable 𝐗: it translates into the Hadamard product 

of the Euclidean gradient by a factor 2𝐗𝑇. The conjugate-gradient algorithm is then used to estimate 

the proportions for its efficiency, associated with an optimal line search at each iteration [6].  

Regarding the implementation choices, a special care has to be taken for the algorithm 

initialization. The matrix proportions could be initialized with the first column equal to 𝐩1 = 𝟏𝑁 (the 

background of the image) and the other set to 𝟎𝑁. However, using the Manopt library and the change 

of variable would lead to a null gradient over all objective variables except 𝐩1: the algorithm would 

remain stuck in the vicinity of the initial point. We propose here to slightly shift from this point to 

allow for a correct evolution of the algorithm. The initial point is thus set to 𝐩1 = 0.9999 ∗ 𝟏𝑁 

(background) and 𝐩𝑡 =
0.0001

𝑇−1
∗ 𝟏𝑁∀𝑡 ≥ 2  (other tissues). The associated medium then includes 

mostly the background and a small proportion of the mixing of all other identified components.  

2.4.2. Markov Random Field spatial regularization As in [3], the ill-posed inverse problem is 

handled by a Markov random field (MRF), equation (7). 𝑙(𝑘) designates the neighbors of the control 

volume 𝑘. The objective is to constrain neighboring control volumes to have close proportion values. 

Such a regularization term provides robustness to noise while allowing a low computational time.  

 Φ(𝑟)(𝐏) =
1

2
∑ ∑ ∑ (𝑝𝑘𝑡 − 𝑝𝑙(𝑘)𝑡)

2
𝑙(𝑘)𝑘𝑡  (7) 

This term is efficiently computed using the Laplacian matrix 𝐋 of the graph:  

Φ(𝑟)(𝐏) = (vec(𝐏)𝑇)(𝐈𝑇 ⊗ 𝐋)vec(𝐏). Its gradient is given by: ∇Φ(𝑟)(𝐏) = 2𝐋𝐏. The chain rule is 

then applied to deduce the derivative relatively to the auxiliary variable 𝐗. The regularization 

parameter is deduced by the L-method [8]. The latter is applied on the residuals of the cost function 

data fit term according to the regularization parameter. The graph features two asymptotic lines. The 

abscissa of their intersection point is chosen as the optimal hyper-parameter.  

2.5. FVE forward solver  

The proportions are estimated using a FVE method [4,7]. The underlying idea is to shift the focus of 

the control volume from an elemental resolution to a nodal resolution. Compared to the initial FEM 

implementation in [3], this allows to reduce the number of control volumes 𝑁, e.g. in the study case by 

a factor 2, i.e. the ratio of the number of elements versus the number of nodes. This is of utmost 

importance, since the multi-frequency Jacobian computed at each iteration scales with 𝑁 × 𝑀𝐹.  

3. Results 

A medium with two components – background and conductive inclusion – was considered, and their 

spectra were assumed known (Figure 1). Synthetic multispectral data was predicted by FEM on a 14 

equally-spaced electrode 2D model. It used 15 frequencies, and a 2D forward mesh including 6,450 

nodes. Reconstructions were performed using the same numerical phantom, and a different mesh, 

including 3,527 nodes corresponding to 6,713 elements.  

   
Figure 1. Conductivity spectra assumed known in the reconstruction - background: saline mixed with 

hashed carrots in blue, inclusion: potato in blue (left); inversion mesh with 14 electrodes (right).  
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Three situations were compared: (i) the parameter estimation using a mono-frequency nonlinear 

algorithm (Levenberg-Marquardt), (ii) the inversion through the proposed multispectral nonlinear 

scheme without spatial regularization, (iii) the deduction of proportions with the regularized 

multispectral framework together with the choice of an optimal regularization parameter. Conductivity 

maps and profiles were displayed for the results (the black circle indicated the expected position; the 

theoretical profiles were in red and the estimated ones in blue).  

3.1. Mono-frequency reconstructions  

Mono-frequency reconstructions led to estimated conductivity profiles that presented oscillations, due 

to the ill-posed behaviour of the inverse problem (Figure 2). The contrasts were relatively well 

recovered by the nonlinear inversion algorithm, relatively to the expected results.  

   
Figure 2. Conductivity profiles from mono-frequency nonlinear reconstructions at 640 Hz and 1 MHz.  

3.2. Multispectral inversion using spectral constraints  

The proportions of the different components were then estimated using the proposed scheme under 

spectral constraints. The multi-frequency data enabled to deduce proportion profiles that would no 

longer present oscillations, i.e. the ill-posed behaviour was reduced (Figure 3). Without spatial 

regularization, strong reconstruction artefacts were observed, namely in the vicinity of the centre of 

the numerical phantom. The MRF regularization tended to smooth the obtained profile, which 

approached the expected one.  

   
Without spatial regularization   With MRF spatial regularization 

Figure 3. Proportion profiles deduced by multispectral inversion (scEIT).  

The inclusion of the spatial MRF regularization was then considered. Values of the hyper-

parameter 𝛼 were tried between 10−5 and 10−1 (Figure 4). For low values of 𝛼, artefacts were 

observed in the centre of the imaging domain, but the contrast in proportion was kept. For high values 

of 𝛼, the contrast was sharply inferior to the expected value, and artefacts tended to appear close to the 

boundary of the domain, with a spatial spread of the recovered proportions.  

   
Figure 4. Proportion profiles and proportion maps of inclusion for extreme values of 𝜶. 
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Mono-frequency conductivity maps were then compared with spectrally constrained proportions 

(Figure 5). The former case showed that for some frequencies, the inclusion was not discernible; 

ringing effects were visible. The latter case showed a properly reconstructed inclusion: the spectral 

constraints allowed to feature very few artefacts and low ringing effects.  
 

    
Conductivity maps (S. m−1), mono-frequency inversion         Proportion map, multispectral inversion 

Figure 5. Estimated reconstructions from synthetic data.  

4. Discussion 
In this paper, we presented a numerical framework to handle the EIT multispectral inversion under 

spectral constraints. The multi-frequency Euclidean gradient was derived explicitly. Proportions were 

then estimated using the oblique manifold and a FVE solver (instead of standard FEM) to reduce the 

computational workload. The optimal regularization parameter was chosen using a bilinear regression.  

Methods were tested on synthetic data. As expected, compared with a mono-frequency 

implementation, the quality of the multispectral reconstruction was enhanced. In this scope, the 

framework allowed to standardize the inversion workflow with the Manopt library. The minimization 

under equality constraints allowed ensuring valid proportions of materials at each control volume.  

The proposed scEIT framework also enabled to enhance the efficiency of the inversion process, 

through the use of a FVE forward solver. With the 14 electrode phantom and the 15 frequencies used 

in this work, the size of the multi-frequency Jacobian that was computed at each iteration (20 

iterations on average) was halved, translating into effective computation and assembly time savings. It 

would have valued in FEM 6,713 × 142 ∗ (15 − 1) elements versus 3,527 × 142 ∗ (15 − 1) in FVE.  

Further studies will focus on applying these numerical developments to in vitro and in vivo data, 

with a straightforward extension to 3D and numerous tissues. They will also consider the robustness to 

the noise in the data and to the variations of the contact impedance at the medium-electrode junction.  
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