
On the constrained minimization of smooth

Kurdyka– Lojasiewicz functions with the scaled

gradient projection method

Marco Prato1, Silvia Bonettini2, Ignace Loris3, Federica Porta2 and

Simone Rebegoldi1

1 Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e
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Abstract. The scaled gradient projection (SGP) method is a first-order optimization method
applicable to the constrained minimization of smooth functions and exploiting a scaling matrix
multiplying the gradient and a variable steplength parameter to improve the convergence of the
scheme. For a general nonconvex function, the limit points of the sequence generated by SGP
have been proved to be stationary, while in the convex case and with some restrictions on the
choice of the scaling matrix the sequence itself converges to a constrained minimum point. In
this paper we extend these convergence results by showing that the SGP sequence converges to
a limit point provided that the objective function satisfies the Kurdyka– Lojasiewicz property
at each point of its domain and its gradient is Lipschitz continuous.

1. The scaled gradient projection method

The scaled gradient projection algorithm (SGP) [4] belongs to the class of first-order methods
designed to solve any constrained optimization problem of the form

min
x∈Rn

Ψ(x) ≡ f(x) + ιΩ(x), (1)

where f is a continuously differentiable function and ιΩ is the indicator function of the nonempty,
closed and convex set Ω. In particular, the (k + 1)–th SGP iteration is computed as

x(k+1) = x(k) + λkd
(k) = x(k) + λk(PΩ,D−1

k
(x(k) − αkDk∇f(x(k)))

︸ ︷︷ ︸

=:y(k)

−x(k)),

where αk is a scalar steplength parameter, Dk is a symmetric positive definite matrix and
PΩ,D−1

k
(·) is the projection onto Ω associated to the norm induced by D−1

k [4]. The step along

6th International Workshop on New Computational Methods for Inverse Problems IOP Publishing
Journal of Physics: Conference Series 756 (2016) 012001 doi:10.1088/1742-6596/756/1/012001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



the descent direction d(k) is performed by means of the linesearch parameter λk = δmk , where
δ ∈ (0, 1) and mk is the smallest non-negative integer such that the monotone Armijo condition

f(x(k) + λkd
(k)) ≤ f(x(k)) + βλk∇f(x(k))Td(k) (2)

is satisfied for a fixed value of the parameter β ∈ (0, 1).
The SGP method is a variable metric forward-backward algorithm [11, 12] which has been
exploited in the last years for the solution of different real-world inverse problems [5, 6, 7, 16,
17, 18]. The main difference between SGP and the standard forward-backward schemes is the
presence of two independent parameters αk and λk with a complete different role: while the
last one is automatically computed with the Armijo condition (2) to guarantee the sufficient
decrease of the objective function, the first one can be chosen to improve the actual convergence
rate of the method, exploiting thirty years of literature in numerical optimization [3, 13, 19, 20].
We also remark that, unlike the schemes presented e.g. in [2, Sect. 5], in SGP the explicit
knowledge of the gradient Lipschitz constant is not required.
The general convergence result on the SGP sequence states that all its limit points are stationary
for problem (1), provided that both the steplength αk and the eigenvalues of Dk are chosen in
prefixed positive intervals [αmin, αmax] and [ 1

µ
, µ], respectively [4]. Convergence of the sequence

to a minimum point of (1) has recently been proved for convex objective functions by choosing
suitable adaptive bounds for the eigenvalues of the scaling matrices [8]. In the following, we will
consider a modified version of SGP in which, at each iteration k ∈ N, we compute

x(k+1) =

{

y(k) if f(y(k)) < f(x(k) + λkd
(k))

x(k) + λkd
(k) otherwise.

(3)

so that the sequence {f(x(k))}k∈N is forced to assume lower values than it originally would
with SGP. By doing so, the new sequence satisfies the condition f(x(k+1)) ≤ f(x(k) + λkd

(k)),
which still guarantees the stationarity of the limit points [8]. The aim of this paper is to prove
the convergence of this modified SGP scheme if the (nonconvex) objective function Ψ satisfies
the Kurdyka– Lojasiewicz (KL) property [15, 14], which holds true for most of the functions
commonly used in inverse problems as p norms, Kullback-Leibler divergence and indicator
functions of box plus equality constraints. A generalization of the proposed method and the
related convergence proof to the minimization of the sum of smooth (nonconvex) and convex
(nonsmooth) KL functions is in progress [10].

2. Preliminary results

Let Ψ : Rn −→ R∪{+∞} be a proper, lower semicontinuous function. For −∞ < η1 < η2 ≤ +∞,
let us set [η1 < Ψ < η2] = {z ∈ R

n : η1 < Ψ(z) < η2}. Moreover, we denote with ∂Ψ(z) the
subdifferential of Ψ at z ∈ R

n and with dist(z,Ω) the distance between a point z and a set
Ω ⊂ R

n. The function Ψ is said to have the KL property at z ∈ dom∂Ψ := {z ∈ R
n :

∂Ψ(z) 6= ∅} if there exist η ∈ (0,+∞], a neighborhood U of z and a continuous concave function
ϕ : [0, η) −→ [0,+∞) such that ϕ(0) = 0, ϕ is C1 on (0, η), ϕ′(s) > 0 for all s ∈ (0, η) and the
KL inequality

ϕ′(Ψ(z) − Ψ(z))dist(0, ∂Ψ(z)) ≥ 1. (4)

holds for all z ∈ U ∩ [Ψ(z) < Ψ < Ψ(z) + η]. If Ψ satisfies the KL property at each point of
dom∂Ψ, then Ψ is called a KL function.
The convergence proof of SGP for KL functions follows the ideas presented in [2], in which the
authors proved an abstract convergence result for descent methods satisfying the following three
conditions:
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H1. (Sufficient decrease condition). There exists a > 0 such that Ψ(x(k+1)) + a‖x(k+1) −
x(k)‖2 ≤ Ψ(x(k)) for each k ∈ N.

H2. (Relative error condition). There exists b > 0 and, for each k ∈ N, w(k+1) ∈ ∂Ψ(x(k+1))
such that ‖w(k+1)‖ ≤ b‖x(k+1) − x(k)‖.

H3. (Continuity condition). There exists a subsequence {x(kj)}j∈N and x̃ such that

x(kj) → x̃ and Ψ(x(kj)) → Ψ(x̃), as j → ∞.

In our case, condition H3 is assured by the continuity of Ψ in Ω and the fact that x(k) ∈ Ω, for
every k ∈ N. Indeed H3 is needed in [2] only to ensure the stationarity of the limit point x̃,
which has already been proved for SGP in [4].
Throughout the entire section, {x(k)}k∈N will denote the sequence generated by SGP. The
following lemma (whose proof follows from [9, Lemma 4.1, Lemma 4.3 and Proposition 4.2])
and corollary guarantee that condition H1 holds for SGP.

Lemma 1 The sequence {x(k)}k∈N satisfies

1

2µαmax
‖y(k) − x(k)‖2 ≤ −∇f(x(k))T (y(k) − x(k)). (5)

Moreover, if ∇f is L-Lipschitz continuous on Ω, then:

• there exists c > 0 such that for all λ ∈ [0, 1]

f(x(k) + λd(k)) ≤ f(x(k)) + λ(1 − cLλ)∇f(x(k))Td(k); (6)

• the sequence {λk}k∈N of SGP linesearch parameters is bounded away from zero, i.e.,

λk ≥ λmin ∀k ∈ N, λmin > 0. (7)

• if f is also bounded from below, then 0 < −
+∞∑

k=0

∇f(x(k))Td(k) < +∞ and, consequently,

lim
k→+∞

∇f(x(k))Td(k) = 0. (8)

Corollary 1 If ∇f is L-Lipschitz continuous on Ω, then

Ψ(x(k+1)) + a‖x(k+1) − x(k)‖2 ≤ Ψ(x(k)). (H1)

Proof: Combining (5) with the backtracking rule (2) immediately yields

f(x(k+1)) ≤ f(x(k)) − βλk

2αmaxµ
‖y(k) − x(k)‖2. (9)

Because of (3), it is either x(k+1) = y(k) or x(k+1) = x(k) + λkd
(k). In the first case, using (9)

with (7) leads to

f(x(k+1)) ≤ f(x(k)) − βλmin

2αmaxµ
‖x(k+1) − x(k)‖2. (10)

In the second case, we obtain the same inequality by using y(k) − x(k) = 1
λk

(x(k+1) − x(k)) and

λmin ≤ λk ≤ 1 in (9). Finally, (H1) follows by adding the indicator function ιΩ to both terms of

(10) and by taking a = βλmin
2αmaxµ

. �

We are now able to prove a slight variant of condition H2 for SGP, in which a subgradient of
Ψ in y(k) (and not in x(k)) is provided.

Lemma 2 Suppose that ∇f is L-Lipschitz continuous on Ω. There exist b > 0 and v(k) ∈
∂Ψ(y(k)) for all k ∈ N such that

‖v(k)‖ ≤ b‖x(k+1) − x(k)‖. (H2)
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Proof: By setting h̃k(y) = ∇f(x(k))T (y − x(k)) + 1
2αk

‖y − x(k)‖2
D−1

k

+ ιΩ(y), we rewrite y(k) as

y(k) = arg min
y∈Rn

h̃k(y) ⇔ 0 ∈ ∂h̃k(y(k)) ⇔ 0 ∈ ∇f(x(k)) +
1

αk

D−1
k (y(k) − x(k)) + ∂ιΩ(y(k))

⇔ w(k) = −∇f(x(k)) +
1

αk

D−1
k (x(k) − y(k)) ∈ ∂ιΩ(y(k)).

Let us define v(k) = ∇f(y(k)) + w(k) ∈ ∂Ψ(y(k)) for all k ∈ N. By using the Lipschitz continuity
of ∇f and (7), the following inequalities hold true:

‖v(k)‖ ≤ ‖∇f(y(k)) −∇f(x(k))‖ +
µ

αk

‖y(k) − x(k)‖ ≤ (L +
µ

αmin
)‖y(k) − x(k)‖

≤ 1

λk

(L +
µ

αmin
)‖x(k+1) − x(k)‖ ≤ 1

λmin
(L +

µ

αmin
)‖x(k+1) − x(k)‖.

The thesis holds by choosing b = 1
λmin

(L + µ
αmin

). �

3. Convergence result

In this section we present the convergence proof of SGP, which differs from that in [2, Lemma
2.6] by the presence of the projection step at each k ∈ N, which was not considered in [2].

Theorem 1 Suppose Ψ is a KL function and ∇f is L-Lipschitz continuous on Ω. If x̄ is a limit

point of {x(k)}k∈N, then x̄ is a stationary point for (1) and x(k) converges to x̄.

Proof: The stationarity of x̄ has been proved in [4]. Since Ψ is a KL function, it satisfies the KL
property at each point of Ω and, in particular, at x̄. This means that there exist η, ϕ and U as in
Section 2, such that the KL inequality (4) holds at x̄. Equation (H1) implies that {Ψ(x(k))}k∈N
is a non increasing sequence and hence Ψ(x(k)) → γ, Ψ(x(k)) ≥ γ. By the continuity of Ψ on Ω
and the fact that x̄ is a limit point of {x(k)}k∈N, we deduce that γ = Ψ(x̄). From (6) with λ = 1
and by definition (3) of x(k+1) we obtain

Ψ(x(k+1)) ≤ Ψ(y(k)) ≤ Ψ(x(k)) + (1 − cL)∇f(x(k))Td(k). (11)

Since Ψ(x(k)) → Ψ(x̄) and (8) holds true, from (11) we also have that Ψ(y(k)) → Ψ(x̄).
Consequently, for all sufficiently large k we have

Ψ(x̄) ≤ Ψ(x(k)) ≤ Ψ(y(k−1)) < Ψ(x̄) + η. (12)

Furthermore, let ρ > 0 be such that B(x̄, ρ) ⊂ U . Then using the continuity of ϕ, one can
choose k0 ∈ N such that both (12) and the following technical condition are satisfied:

‖x̄− x(k0)‖ + 3

√

Ψ(x(k0)) − Ψ(x̄)

aλ2
min

+
b

a
ϕ(Ψ(x(k0)) − Ψ(x̄)) < ρ. (13)

We will now use {x(k)}k∈N to denote the sequence {x(k+k0)}k∈N. Let us rewrite (H1) as

‖x(k+1) − x(k)‖ ≤
√

Ψ(x(k)) − Ψ(x(k+1))

a
, (14)

which, by recalling x(k+1) − x(k) = λk(y(k) − x(k)) and (7), yields also

‖y(k) − x(k)‖ ≤
√

Ψ(x(k)) − Ψ(x(k+1))

aλ2
min

. (15)
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Fix k ≥ 1. We state that if x(k), y(k−1) ∈ B(x̄, ρ), then

2‖x(k+1) − x(k)‖ ≤ ‖x(k) − x(k−1)‖ + ϕk, (16)

where ϕk = b
a
[ϕ(Ψ(x(k)) − Ψ(x̄)) − ϕ(Ψ(x(k+1)) − Ψ(x̄))]. Observe that, because of (12), the

quantity ϕ(Ψ(x(k)) − Ψ(x̄)) makes sense for all k ∈ N, and thus ϕk is well posed.
If x(k+1) = x(k) inequality (16) holds trivially. Then we assume x(k+1) 6= x(k). This assumption,
combined with (14) and (12), guarantees that x(k), y(k−1) ∈ B(x̄, ρ) ∩ [Ψ(x̄) < Ψ < Ψ(x̄) + η]
and therefore we can use the KL inequality in x(k) and y(k−1).
By exploiting the KL inequality at y(k−1) with (H2), it follows that v(k−1) 6= 0 and x(k−1) 6= xk.
Since v(k−1) ∈ ∂Ψ(y(k−1)), we can use again the KL inequality combined with (H2) to obtain

ϕ′(Ψ(y(k−1)) − Ψ(x̄)) ≥ 1

‖v(k−1)‖ ≥ 1

b‖x(k) − x(k−1)‖ . (17)

Since ϕ is concave, its derivative is non increasing, thus Ψ(y(k−1)) − Ψ(x̄) ≥ Ψ(x(k)) − Ψ(x̄)
implies ϕ′(Ψ(x(k))−Ψ(x̄)) ≥ ϕ′(Ψ(y(k−1))−Ψ(x̄)). This fact applied to inequality (17) leads to

ϕ′(Ψ(x(k)) − Ψ(x̄)) ≥ 1

b‖x(k) − x(k−1)‖ . (18)

Then following the same procedure of [2, Lemma 2.6], which uses the concavity of ϕ, (H1)
and (18), we obtain ‖x(k+1) − x(k)‖2 ≤ ϕk‖x(k) − x(k−1)‖ which, by applying the inequality
2
√
uv ≤ u + v, gives relation (16).

We are now going to show that for j = 1, 2, . . .

x(j), y(j−1) ∈ B(x̄, ρ), (19)
j

∑

i=1

‖x(i+1) − x(i)‖ + ‖x(j+1) − x(j)‖ ≤ ‖x(1) − x(0)‖ + χj , (20)

where χj = b
a
[ϕ(Ψ(x(1)) − Ψ(x̄)) − ϕ(Ψ(x(j+1)) − Ψ(x̄))].

In order to prove (19)–(20), let us reason by induction on j. Using the triangle inequality, (14)
with k = 0, the monotonicity of {Ψ(x(k))}k∈N and (13) we have

‖x̄− x(1)‖ ≤ ‖x̄− x(0)‖ + ‖x(0) − x(1)‖ ≤ ‖x̄− x(0)‖ +

√

Ψ(x(0)) − Ψ(x̄)

a
< ρ,

namely x(1) ∈ B(x̄, ρ). Using (15) with k = 0 and applying the same arguments as before, we
also have y(0) ∈ B(x̄, ρ). Finally, direct use of (16) shows that (20) holds with j = 1.
By induction, suppose that (19)–(20) hold for some j ≥ 1. Since proving that x(j+1) ∈ B(x̄, ρ) is
identical to [2], we focus on y(j) ∈ B(x̄, ρ). We rewrite (15) by noticing that Ψ(x̄) ≤ Ψ(x(k+1)) ≤
Ψ(x(k)) ≤ Ψ(x(0)), which implies that ‖y(j) − x(j)‖ ≤

√
(
Ψ(x(0)) − Ψ(x̄)

)
/aλ2

min. By using this

last equation, the triangle inequality, (20) with k = j and (13), we have

‖x̄− y(j)‖ ≤ ‖x̄− x(0)‖ + ‖x(0) − x(1)‖ +

j
∑

i=1

‖x(i+1) − x(i)‖ + ‖x(j+1) − x(j)‖ + ‖x(j) − y(j)‖

≤ ‖x̄− x(0)‖ + 2‖x(0) − x(1)‖ + χj + ‖x(j) − y(j)‖

≤ ‖x̄− x(0)‖ + 3

√

Ψ(x(0)) − Ψ(x̄)

aλ2
min

+
b

a
ϕ(Ψ(x(0)) − Ψ(x̄)) < ρ,
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or equivalently y(j) ∈ B(x̄, ρ). Hence, (16) holds with k = j + 1, i.e. 2‖x(j+2) − x(j+1)‖ ≤
‖x(j+1) − x(j)‖ + ϕj+1. Adding the above inequality with (20) (with k = j) yields (20) with
k = j + 1, which completes the induction proof.
From (20) it immediately follows

∑j
i=1 ‖x(i+1) − x(i)‖ ≤ ‖x(1) − x(0)‖+ b

a
ϕ(Ψ(x(1))−Ψ(x̄)) and

therefore
∑+∞

i=1 ‖x(i+1) − x(i)‖ < +∞, which implies that the sequence {x(k)}k∈N converges to
some x∗. Since x̄ is a limit point of the sequence, it must be x∗ = x̄. �
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