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Abstract. We use the open-source code nek5000 to assess the accuracy of high-order spectral
element large-eddy simulations (LES) of a turbulent channel flow depending on the spatial
resolution compared to the direct numerical simulation (DNS). The Reynolds number Re = 6800
is considered based on the bulk velocity and half-width of the channel. The filtered governing
equations are closed with the dynamic Smagorinsky model for subgrid stresses and heat flux.
The results show very good agreement between LES and DNS for time-averaged velocity and
temperature profiles and their fluctuations. Even the coarse LES grid which contains around
30 times less points than the DNS one provided predictions of the friction velocity within 2.0%
accuracy interval.

1. Introduction
The turbulent regime of a fluid motion is often encountered in many natural phenomena
and practical applications. The complexity of a turbulent flow is due to a wide spectrum of
scales interacting in a non-linear fashion [1]. The problem becomes even more complicated
when the flow is constrained by a rigid surface which substantially changes the properties of
turbulence by introducing inhomogeneity in the wall-normal direction. The control of wall-
bounded turbulent characteristics is a great scientific challenge where numerical simulations can
effectively contribute.

The fluid motion is described by the Navier–Stokes equations which are nowadays possible
to simulate directly resolving all the relevant scales. The obvious drawback of this approach is
the high computational cost since the discretization and time step should be comparable with
the size and turnover time of the smallest eddy. In a Large-eddy simulation (LES) one applies
a low-pass filter to the Navier–Stokes equations. A well-known source of a possible error into
the final solution is the common assumption that the spatial filtering operation commutes with
spatial derivatives. The resulting equations describe the dynamics of the vortices which are
larger than the filter size with a new unclosed term on the right-hand side representing the
influence of the ‘small’ scales on the ‘larger’ ones. The subgrid scale model is a second source
of error. The last issue in LES is the numerical scheme of discretization which brings the third
kind of error. All three types of errors can interact with each other. Various approaches and
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criteria have been suggested in the literature to assess the quality of LES, such as Refs. [2–
7] among others. In the present work we employ a high-order spectral element method [8] to
discretize the equations, thus, significantly reducing the discretization error in the final solution,
and investigate the performance of the widespread dynamic Smagorinsky model for the subgrid
stress tensor and heat flux vector. We perform a set of Large-eddy simulations with different
levels of grid refinement using the open-source spectral element code nek5000 [9] and compare
the results with DNS.

2. The governing equations and computational details
The governing equations are the following:

∂u

∂t
+ (u∇)u = −∇p+

1

Re
∇2u, ∇ · u = 0, (1)

∂θ

∂t
+ (u∇)θ =

1

Pe
∇2θ, (2)

where u, p and θ are the dimensionless velocity vector, pressure and temperature fields,
respectively. The Reynolds number Re = UbH/ν is defined using the bulk velocity Ub, half-
width of the channel H and constant kinematic viscosity of the fluid ν. Another non-dimensional
criterion is the Péclet number Pe = UbH/α, where α is the constant thermal diffusivity. All
simulations are performed for the Prandlt number Pr = Pe/Re = ν/α = 1. Equations (1) and
(2) are used to perform direct numerical simulations (DNS).

Applying the spatial low-pass filtering [10] denoted by tilde

ũ(x, t) =

∫
G(x− r)u(r, t)dr, (3)

where G is the filter function, to equations (1) and (2) we arrive to the filtered Navier–Stokes
equations:

∂ũ

∂t
+ (ũ∇)ũ = −∇p̃+

1

Re
∇2ũ−∇ · τ, ∇ · ũ = 0, (4)

∂θ̃

∂t
+ (ũ∇)θ̃ =

1

Pe
∇2θ̃ −∇ · q, (5)

where τ denotes the subgrid stress tensor and q represents the subgrid heat flux vector:

τ = ũ · u− ũ · ũ, q = ũ θ − ũ θ̃, (6)

The subgrid stress tensor and heat flux vector are expressed using the Boussinesq hypothesis:

τij − τkkδij/3 = −2νtS̃ij , νt = (Cs∆)2|S̃|, qi = −Pr−1t νt ∂iθ̃, (7)

where δij is the Kronecker delta, νt, Cs and Prt are the turbulent viscosity, Smagorinsky constant
and turbulent Prandtl number which are computed dynamically as described below, ∆ is the
filter width, and |S| =

√
2SijSij is the magnitude of the strain-rate tensor

Sij =
1

2
(∂jui + ∂iuj), (8)

where a compact notation for the derivative is adopted, ∂jui = ∂ui/∂xj . The Smagorinsky
constant and turbulent Prandtl number are defined as follows [11, 12]:

C2
s = −

〈( ̂̃uiũj − ̂̃uî̃uj)S̃ij〉/〈2
(

∆̂2|̂̃S|̂̃Sij −∆2 |̂S̃|S̃ij
)
S̃ij

〉
, (9)

Prt = C2
s

[〈( ̂̃
uiθ̃ − ̂̃uî̃θ)∂iθ̃〉/〈(∆̂2|̂̃S|∂î̃θ −∆2 |̂S̃|∂iθ̃

)
∂iθ̃
〉]−1

, (10)

TPH IOP Publishing
Journal of Physics: Conference Series 754 (2016) 062009 doi:10.1088/1742-6596/754/6/062009

2



where the angular brackets (〈 . 〉) denote the averaging along the homogeneous directions (x
and z in our case, see Fig. 1 below). Thus, Cs and Prt are the functions of time and one
spatial (wall-normal) direction only. The value of the Smagorinsky constant is clipped to zero

in case the negative values occur. The test filter ∆̂ = 2∆ in the position (xi, yi, zi) is defined
as 3
√

∆xi∆yj∆zk, where ∆xi = xi+1 − xi−1, ∆yj = yj+1 − yj−1, ∆zk = zk+1 − zk−1 with i, j, k
being the structured indices of the point inside each spectral element. The above described
governing equations are implemented in the nek5000 code [9] with a spatial discretisation based
on the spectral-element method using Lagrange polynomials. The Navier–Stokes equations are
cast in a weak form and discretised in space by means of Galerkin approximation using Nth-
order Lagrange polynomial interpolants on the Gauss-Lobatto-Legendre points for the velocity
field and (N − 2)th-order for the pressure (PN − PN−2 formulation). In the present work the
polynomial order N is set to 7. The semi-implicit time-stepping scheme is of the third-order
accuracy.

Figure 1. Geometry of the channel and boundary conditions

We study a turbulent flow between two infinite parallel walls at a Reynolds number of
Re = 6800. A rectangular computational domain of the size Lx × Ly × Lz = 2πH × 2H × πH
is used where x is the streamwise coordinate (along the flow), y is the wall-normal axis and z is
the spanwise coordinate, Fig. 1. The planes y = ±H correspond to the position of parallel walls.
The infinite flow domain is modeled by periodic boundary conditions in x and z directions.
No-slip condition (u = 0) and constant temperature for hot upper (θ = θh) and cold lower
(θ = θc) wall are imposed. A dynamically adjusted body force is added in equations (1) and (3)
to keep a constant mass flux through the plane y − z. Note that all the quantities below are
non-dimensionalized using Ub, ∆θ = θh − θc and H unless otherwise specified.

The initial conditions of the simulation are set using the analytic profiles ux = 5(1 − y4)/4,
uy = uz = 0 and θ = (1 + y)/2. The random noise with a 5% amplitude of the bulk
velocity is added to all velocity components to accelerate the transition to turbulence. The
statistical analysis is performed for the flow only after a sufficient period of computational time
to minimize the influence of initial transients on time-averaged characteristics. Figure 2 shows
the instantaneous temperature field of the flow going from left to right from the DNS visualizing
the near-wall vortical structures. Table 2 shows the characteristics of the mesh used for DNS
and LES, where Nse is the number of spectral elements along each direction (x, y, z), Npoints

is the number of nodes along each direction and Ntot is the total number of nodes. We used
structured hexahedral grids for the present calculations.
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Figure 2. Instanteneous temperature field from DNS. The flow goes from left to right. The top
wall is hot (red), the bottom one is cold (blue). The inset on the right shows a small fragment
of the computational hexahedral mesh

Table 1. Mesh characteristics

DNS LES1 LES2 LES3
Nse 40× 30× 30 26× 20× 20 20× 16× 16 14× 10× 10
Npoints 320× 240× 240 208× 160× 160 160× 128× 128 112× 80× 80
Ntotal 18.4× 106 5.3× 106 2.6× 106 0.72× 106
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Figure 3. Comparison of the time-averaged velocity and temperature profiles with the data
from KMM [13] and DTC [14]

3. Results
We compare time-averaged profiles of velocity, temperature and its fluctuations from the present
DNS, LES and DNS data from the literature [13, 14]. The present data is also averaged along
the homogeneous x and z directions. Figure 3 shows the comparison of ux and θ where the
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Figure 4. Comparison of the time-averaged velocity and temperature fluctuations with the
data from KMM [13] and DTC [14]

overline denotes the time-averaging. The velocity profile is in excellent agreement with the data
of [13] who used a fully spectral code based on Chebyshev polynomials in y and Fourier in x
and z direction. The temperature profile also shows good agreement, however, slightly deviating
from the data [14]. Note that in the present calculations Pr = 1.0 while Pr = 0.71 in [14] who
used second order accurate discretization.

Figure 4 shows the comparison of different components of u′iu
′
j and u′iθ

′. DNS shows excellent

agreement, while the LES data may slightly deviate from the results of [14]. The important fact
is a good prediction of the fluctuations peak near the wall even for the very coarse mesh (LES3).
This peak is the result of the dynamics of streaky structures in the near-wall region. Figure 5
shows the instantaneous field of ux near the wall (y/H = 0.95) in the x−z plane, where this peak
of fluctuations appear. Visualizations for all meshes look very similar despite the differences in
the spatial resolution. Table 3 shows the comparison of the non-dimensional friction velocity
uτ (u2τ = Re−1∂yux|wall) and friction temperature θτ = (Pe uτ )−1∂yθ|wall. All simulations
show excellent agreement with data from the literature within 2.0% accuaracy interval. Note
that relatively high uτ deviation calculated for LES1 mesh is probably caused by the effect of
transients and insufficient averaging time. This issue is currently investigated. Note also the
robust prediction of the correct θτ value for all grids even when uτ deviates (LES1). The larger
value of θτ in [14] is due to the lower Pe (0.71 against 1.0).

4. Conclusion
We performed a series of Large-eddy simulations of a turbulent channel flow at Re = 6800
to assess the accuracy of the numerical method coupled with dynamic Smagorinsky model for
subgrid stress tensor and heat flux vector. An excellent agreement for the time-averaged velocity,
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Table 2. Comparison of uτ and θτ (percentage is given as a relative error in comparison with
the present DNS data)

[13, 14] DNS LES1 LES2 LES3
uτ 0.05699 0.05701 0.05588 (-1.98%) 0.05663 (-0.67%) 0.05634 (-1.18%)
θτ 0.02306 0.01945 0.01933 (-0.62%) 0.01962 (+0.87%) 0.01981 (+1.85%)

Figure 5. Instantaneous axial velocity field in x − z plane near the wall at y/H = 0.96
(y+ = yuτ/ν ≈ 16) for DNS and LES is shown. In the right top corner four spectral elements
are shown schematically

temperature and their fluctuations is obtained. We also compared the value of friction velocity
and temperature indicating the near-wall solution accuracy. Even the coarse LES grid which
contains around 30 times less points than the DNS one provided predictions of the friction
velocity within 2.0% accuracy interval which is encouraging for engineering applications. The
next step is to assess the accuracy of LES in variable-density flows. Spectral-element method is
well suited for procedures such as spatial filtering and deconvolution employed in reacting flow
models [15].
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