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Simulation of liquid cube fracture with SPH
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Abstract. The dynamics of fracture of liquid cube with high-pressure cavity is studied
numerically in a three-dimensional formulation using the Smoothed Particle Hydrodynamics
method (SPH). It is shown that the propogation of shock wave from growing cavity and reflection
from the free side is due to relaxation of tensile stresses in the liquid volume and formation of
quasistationary mass-velocity field which provides fracture of the fluid.

1. Introduction

The problem of liquid breakdown in intense rarefaction waves is directly related to the notion
of strength, which does not have a precise and clear definition in the mechanics of liquids under
dynamic loading, unlike in solid mechanics [1]. A typical examples of this process is the ejection
fraction of magmatic melt from the channel of the volcano during the exposive eruption [2] or
the formation of sultans out on the free surface at shallow underwater explosions.

Numerical methods based on finite differences are unable to solve such problems, therefore it
is required to use methods that can simulate of flows in the complex variable geometry region.
In this paper, a model problem of an underwater explosion in the cube of pure (one-phase) liquid
using the SPH method [3] is considered.

2. SPH method

The smoothed particle hydrodynamics (SPH) method [4, 3] is an effective meshless Lagrangian
numerical method used to calculate flow structures with an unknown free boundary, in particular,
high-velocity processes in media with the modeled object topology appreciably changed under
intense dynamic loading.

In this method N spherical particles are placed into the modeled physical space. Each
particle has a mass m;, internal energy e;, and velocity #;. The particles move in accordance
with the laws of mechanics. If these physical quantities are known at a certain time at all points
j=1,...,N to which N particles are placed, i.e., if a certain function f(r;) is specified, then
its value at an arbitrary point of the modeled space can be obtained by means of discretization
of the interpolation formula

() = [ £ =

where h is the smoothing radius and W (r — 7/, h) is the smoothing function (kernel) for which
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the following conditions should be satisfied:
/W(r, h)dr =1, lim W (r,h) = d(r)
h—0

In this work we use the known definition of the kernel based on third-order piecewise-spline
functions [4].

As the smoothing function W is not equal to zero only in a certain (small) neighborhood of
the point with the coordinate r, the result of interpolation is affected only by those nodes that
are located in the neighborhood of smoothing of this point. Therefore, it is possible to avoid
summation over all known values of the function and to perform it only over the neighboring
nodes (particles) located at distances smaller than 2h.

It should be noted that the procedure of sampling of all particles in space has a quadratic
order of complexity, and it is next to impossible to implement it in practice. As the particles
arbitrarily move in space and can freely mix, the task of effective (time-efficient) searching for
the neighboring particles is extremely important for the SPH method. One possible approach
to solving this problem is to divide the space into cells and to perform summation only over
particles in the neighboring cells. It should be noted that the mesh constructed for this purpose
is an auxiliary tool used for accelerating the process of searching for the neighboring particles
rather than for approximation; therefore, it does not affect the resultant solution, and the SPH
method is still a meshless one.

In the SPH method the gas dynamic equations have the form

dpi N m;
S = (0 = ) VW (i — 1, )
at =1 pj
ov; al Di | Dj
E:—ij —2+—2 VW(TZ'—T]',}‘L).
j=1 i Pj

We use the known definition of the liquid state equation:

2 v
PoC
p=po+—2 Kﬁ) —1],
Y P0o
where v = 7.15, pg and py is a reference density and pressure, ¢y is a speed of sound (approximate
1500 m/s).

3. Results of numerical simulations

Initially, the liquid is a cube with sides of 1 cm, located on the XY plane, OZ axis passes
through the center of the cube. Inside the liquid, at a distance of 2.5 mm from the top side of
the cube, there is a spherical cavity radius of 1 mm, the center of which is located on the axis
OZ. The pressure in the cavity is 10000 atm, the rest of the liquid is at atmospheric pressure
po. Figure 1-3 shows the distribution of pressure and particle velocities in the central section of
the cube (the plane y = 0).

The shock wave propagates from the high-pressure cavity. The amplitude of shock wave
decreases as it propagates. Figure 1 shows the begin of reflection the shock wave from the top of
the cube at time 1 us. Near to the cavity layer of liquid starts to move. Only particles in which
U # 0 is painted on the figure. It is clearly seen that the velocity distribution is symmetric with
respect to the cavity.

Figure 2 shows that the wave reaches the faces of the cube and is reflected from its borders, at
first it occurs on the side face, then on the bottom. By this time, the upper bound is significantly
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Figure 1. Distribution of pressure and particle velocities in the central section of the cube
(1 ps)
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Figure 2. Distribution of pressure and particle velocities in the central section of the cube
(5 ps)

deformed, curling up. Almost all particles are in motion, it is clear that the particles at the
boundary of the cavity “push” other particles.

After a few tens of microseconds pressure field substantially relaxes, only individual particles
have the pressure greater then pg, and scored the particle velocity continues to scatter out of
inertia, thereby simulating the fraction of the liquid (Fig. 3). One clearly sees a deformation of
the side and bottom faces of the cube. The particle size distribution shows that inside a cube
formed low-density zones, which lead to the growth medium fracture into fragments.

Figure 4 shows the development of process in 3D view, it is an isosurface of the density field
for the half of the cube, the value of the density is p* = 0.45 g/cm®. It means that the isosurface
bounds the area where the density of the liquid is greater than or equal to the p*. Clearly that
by the time 500 us (Fig. 4a) the cavity has increased in size by several times, “stretched” up
and deformed the top face of the cube, the hole is formed. Bottom and side faces of the cube is
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Figure 3. Distribution of pressure and particle velocities in the central section of the cube
(25 us)

Figure 4. Isosurface p = 0.45 g/cm? for the half cube in times 500 and 10000 us

slightly deformed.

It should be noted that the same liquid particles spreads to distances greater than the
smoothing radius, which means the loss of bonding in the SPH formulation and is interpreted
as the medium fracture [5].

In the future, the vertical jet of liquid is formed on the top face of the cube, which gradually
destroyed. Flying off individual spalls are formed on the side and bottom faces, where the
destruction is not so strongly expressed (Fig. 4b). In the future and in these areas the
destruction of the liquid will occur and the emergence of a breakaway from the main volume
of ”layers”. It is evident that the environment, flying away, loses consistency and disintegrates
into fragments. Further development of the process leads to the dissipation of the particles and
the final destruction of the liquid.
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4. Conclusion

The results of the numerical analysis of the processes of formation and dynamics of the structure
of spalling zones after reflection of the shock wave generated by an underwater explosion from
the free surface are presented. It shows that the SPH method can be used to study the dynamics
of the liquid cube fracture. A numerical simulation shows that the shock wave reflection from
the free surface leads to relax of a high pressure and subsequent decomposition into individual
fragments and clusters of almost free particles.
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