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Abstract.  The article is devoted to the simulation of nonlinear waves on a liquid film flowing 

under gravity in the known stress field at the interface. In the case of small Reynolds numbers 

the problem is reduced to the consideration of solutions of the nonlinear integral-differential 

equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state 

traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers 

are constructed analytically. The nature of the wave branching from the undisturbed solution is 

investigated. Steady-state traveling solutions, whose wave numbers within the instability area 

are far from neutral wave numbers, are found numerically. 

 

 

1.  Introduction and problem statement 

Simultaneous liquid and gas flow is a classical problem of hydrodynamics. The solution to this 

problem in a full statement is associated with considerable computational difficulties. So, two stages 

of simulation are often distinguished: determining gas stresses on the film surface and further 

calculating the evolution of waves in the liquid. The liquid velocity is much smaller than the 

characteristic gas velocity, so the boundary surface is supposed to be rigid and stationary. In addition, 

due to the smallness of film thickness, the influence of interfacial perturbations on gas velocity may be 

considered as linear. As a result, the problem of computing the normal and shear stresses of gas on 

the surface is reduced to considering the impact of individual spatial harmonics. At the second stage of 

simultaneous flow study, the dynamics of nonlinear waves on the liquid film surface is  examined. 

This paper deals with the second stage of studies, namely simulating the dynamics of nonlinear 

waves on a liquid film, flowing under the action of gravity in the known stress field at the interface. 

The gas flow is turbulent and occurs in a vertical channel. Full statement of the problem for liquid 

includes Navier–Stokes and continuity equations with respective kinematic and dynamic boundary 

conditions. 

If function ( , )y h x t  determining the position of the area boundary is single-valued  there is a 

continuously differentiable coordinate transformation that transforms the area of the fluid flow into the 

band of constant thickness. 

, / ( , ), .x x y h x t t t       (1.1) 

In the paper [1] the system of hydrodynamic equations was presented in tensor form invariant 

under coordinate systems. Its use enabled obtaining a model system of equations for the considered 

flow to describe the evolution of long-wave perturbations of the interface at moderate Reynolds 

numbers. 

In the case of low flow rates (Re ~ 1), due to the film thickness smallness compared to the 

wavelength, the solution of the system is represented as a series on small parameter. As a result, 

restricting the expansion to the first two terms, one evolutionary equation for the film thickness h was 

obtained: 
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Here dimensionless parameters are introduced: Reynolds number   0 0R /e h u  , Froude number  

2
0 0F /r u gh , parameter 2

0 0W / l u  ,  and 0 0h l   is relation of specific film thickness   0h  to 

specific wave length 0l . Direction of coordinate x coincides with the direction of gravity vector. In 

addition, in the equation (1.2) and in the dimensionless complexes we use the characteristic scales of 

velocity  0u  and time   0 0/l u . Here p is the pressure,   is the surface tension,   is the density,   

is the dynamic viscosity of liquid, g is the acceleration of gravity, 0 is undisturbed component of gas 

shear stress on the film surface, ( ) ( ) ( )r imk k i k     are the Fourier components of tangential 

stresses of gas due to the boundary curvilinearity, and ˆ( , )h k t  
are the Fourier components of the 

surface form expansion: 
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We should emphasize that the approximation of small Reynolds numbers (Re ~ 1) is used to derive 

the equation (1.2), and it is assumed that the Weber number is large: W .~1  In the case of spatial 

periodic solutions of equation (1.2), the integral term is replaced by the respective Fourier series. 

Restricting ourselves to perturbations of small but finite amplitude, introducing slow and fast times 

into consideration and using  transformation 1 0 11 , ,h h t t t t     , from equation (1.2) we 

obtain: 
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  (1.4) 

Equation (1.3) implies that in the first approximation (fast times), perturbations of small but finite 

amplitude propagate with a characteristic constant velocity  0 0Re Fr 1 r .Fc    In this 

approximation, the motion occurs without changing the initial form of perturbations. 

Equation (1.4) describes the nonlinear evolution of perturbations on large (slow) times. The 

characteristic longitudinal scale 0l  
is defined so that the coefficients for the second and fourth 

derivatives in equation (1.4) are the same. This implies that the ratio for   will take the form: 
2 2

02Re 5WFr (1 Fr ).    Considering this choice after replacement 1,t bt  h1 = AH, 

WRe 3,b    02Fr Re(2 Fr )A b   , the equation (1.4) will be rewritten in the form: 
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Thus, in the case of small Reynolds numbers, the problem of studying perturbations on the surface 

of the liquid film, flowing under gravity in the known stress field at the interface, is reduced to the 

analysis of one nonlinear integral-differential equation. 
Equation (1.5) is an interesting example of model equations arising in the study of the evolution of 

perturbations in active-dissipative media. The instability of linear perturbations is determined by its 

terms with the second derivative and the term containing the integral (conditioned by stress 

perturbation at the interface of film–gas). Dissipation is provided by the fourth derivative, simulating 

capillary effects. Indeed, neglecting a nonlinear term in (1.5) and presenting its solution as 

~ exp( ( )),H ik x ct  we obtain the following relation for dispersion: 

3( ) ( ).r ic c ic i k k Bk k         (1.6) 

Disturbances will be unstable if the imaginary part of the phase velocity ic  exceeds zero.  

As the second term in the right part of (1.6), responsible for the perturbation stability, decreases 

faster than, for example, the first one, then the unstable are the long-wave perturbations. Their wave 

numbers are smaller than the neutral wave number nk satisfying the equation: 

21 ( ) 0.n im nk B k       (1.7) 

As it can be seen from (1.7), the above described choice of the characteristic longitudinal scale 0l  

implies that the neutral wave number 1nk   in the case of the freely falling film (B = 0). We will 

choose the parameters of the undisturbed flow, so that the neutral wave number nk  different from the 

unit. At the same time demand that this value nk  corresponds to a definite value im . The value B 

corresponding to this situation is determined from (1.7): 
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2.  Results of nonlinear wave calculation on the model equation 

For finding solutions of equation (1.5) periodic on x the function H is presented as a spatial Fourier 

series: 

 

( , ) ( )exp( ).n

n

H x t H t iknx
 

              (2.1) 

Since Н is real function, then .n nH H   The bar indicates the operation of complex conjugation. 

Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral 

wave numbers, are found numerically.  

Having substituted (2.1) into equation (1.5)  we obtain an infinite system of ordinary differential 

equations for Fourier harmonics ( ).nH t  Supposing that all ( )nH t  with indices | |n N  are equal to 

zero, obtain its finite-dimensional counterpart. 

At the points with neutral wave numbers nk  the steady-state traveling linear solutions bifurcate 

from the trivial solution  0H  . As it is seen from (1.6), they have the following  phase velocity and 

frequency, respectively: 
2

0 0 0( ), ( ).n r n n n r nc Bk k k c Bk k      

In the vicinity of the neutral wave number nk , the solutions are represented in the form of a series 

(2.1). At the same time, we believe that 
n

n nH H , 

          
2

2nk k k                                                 (2.2) 

and introduce the set of different times: 

                                              , 0,1, 2, .n
nt t n 

                                          
(2.3) 
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Here  δ  is a small parameter. 

Using the representations (2.2), (2.3) and substituting the series (2.1) into the equation (1.5), we 

collect the coefficients of the same degrees of parameter δ and equate them to zero. As a result, after a 

rather simple but cumbersome calculations we obtain: 

                         
2

2exp[ ( )] exp[2 ( )] . .HH A i kx t A A i kx t C C                              (2.4) 

Here 2 2
1 0, , ,n kA H k k A A A A      

 
C.C. is the complex-conjugate expression. 

From (2.4) it is clear that in the solution it is possible to take δ equal to 1, and to use the amplitude 

of the first harmonic A as the small parameter. Coefficients 2 , ,H kA A A  depend only on the values 

( ), ( ) / , (2 )
n

n nk
k d k dk k   . Due to the bulkiness their explicit forms are not presented here. The 

phase velocity with an accuracy of A
2
 is: 

2 2
0

0 02
( ).k

nn k

A A A
c c A c A

k kk A A




 
    


 

Calculating the below presented results, we used data on stress pulsations obtained by the model of 

Benjamin in the work [1]. 

Figures 1and 2 show the dependences of the coefficients ,kA A  on the parameter B for 1.1nk 

and  1.5nk  ,  respectively. As can be seen from these figures, the type of branching here is soft, i.e. 

the correction to the wave number is negative. In other words, the wave numbers of the steady-state 

traveling regimes of small but finite amplitude are in the range of linear instability. 

 

  

Figure 1. Dependencies of the coefficients kA  

(curve 1) and A  (curve 2) on the parameter B. 

Neutral wave number 1.1.nk    

Figure 2. Dependencies of the coefficients  

kA  (curve 1) and A  (curve 2) on the 

parameter B. Neutral wave number 1.5.nk   

 

To obtain the steady-state traveling solutions of this family (the first family) with wave numbers 

lying beyond the vicinity of the neutral wave number nk , the problem was solved numerically. At 

truncating series (2.1) for values of N from 8 to 15. The evolution of the periodic perturbations was 

considered. The calculations show that in the region of wave numbers, where there is only the first 

family of steady-state traveling solutions, all initial perturbations evolve to the solution of this family. 
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Figure 3. Dependence of the velocity of steady-

state traveling solutions of the first family on the 

wave  numbers k. 

Figure 4. Surface profiles for three different time 

moments: t = 100 (1), 200 (2), 300 (3).  

 

Figure 3 shows the dependence of the velocity of steady-state traveling solutions of the first family 

obtained at the parameter value 0.204B  .  In this case, the neutral wave number 1.5nk  . As an 

example, figure 4 shows the solution of this family with wave number 0.85k  . Here wave profiles 

are shown for three different time points. Two wave lengths 2 ( 2 / )k    are plotted along the 

abscissa axis. The wave velocity  c  is equal to -0.495. 

 

3. Conclusion 

Thus, nonlinear waves on the film of liquid flowing under gravity in the known stress field at the 

interface have been considered. In the case of small Reynolds numbers the problem was reduced to 

considering solutions of the nonlinear integral-differential equation for film thickness deviation from 

the undisturbed level. In this paper the nature of the wave branching from the undisturbed solution was 

investigated. The weakly nonlinear steady-state traveling solutions of this equation with wave 

numbers in the vicinity of neutral wave numbers were constructed analytically The steady-state 

traveling solutions of the first family,  whose wave numbers within the instability area are far from 

neutral wave numbers, were found numerically. The examples of some periodic solutions to this 

equation were presented.  
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