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Abstract. In the paper, an experimental investigation of the local structure of a bubbly upward 

flow in an annular channel was carried out by means of a combination of PIV/PFBI/PTV 

techniques. PIV was applied to measure velocity distributions and turbulent characteristics in 

the continuous phase, PFBI approach was applied to visualize bubbles in the flow and evaluate 

their positions and sizes and the simplest PTV method was employed to determine the bubble 

velocities. The flow was studied at the Reynolds number of 12,500 and different void fractions 

β = 0, 1 and 2%. The mean air bubble diameter was estimated to be about 0.8 mm for all β. 

Bubble concentration was observed to increase near the channel walls. Rising velocity of the 

gas bubbles was measured in various locations across the annulus duct and it was found that it 

is substantially higher for the bubbles moving in the central part of the channel. An increase of 

the void fraction resulted in redistribution of the mean velocity in the flow cross-section and 

intensification of the turbulent fluctuations up to three times for β = 2%. 

1. Introduction

Two-phase bubbly flows are used in various hydrotechnical and hydropower engineering facilities, 
which makes their investigation vitally important and highly urgent. In most of the studies on the heat 
transfer and hydrodynamics in bubbly media available in literature at present, high-Reynolds-number 
dispersed flows in vertical pipes are mainly considered (e.g. [1–5]). Depending on the gas 
concentration, size distribution of bubbles, Reynolds number, characteristic turbulence scales and 
other conditions, various effects can be observed. For instance, injection of a gas into a moving liquid 
is well known [6, 7] to cause a noticeable modification of the flow hydrodynamic structure (even at 
low gas fractions) due to redistribution of gas bubbles across a duct and, thereby, alteration of the 
mean flow and intensification or suppression of turbulence, e.g. this phenomenon is determinative for 
heat transfer processes in the near-wall region. 

In spite of the fact that the literature is abundant in researches on bubbly pipe flows, it lacks for 
experimental studies on bubbly flows in complex geometries, such as annular channels, vertical rod 
assemblies, tubes with partially obscured cross-section and others. Moreover, results obtained for a 
pipe flow can be hardly translated to a complicated flow which seem, however, quite similar at first 
glance, e.g. annular flow where liquid moves through a gap between two coaxial tubes. Annular 
channel is a simplified test object for modeling the flow in fuel assemblies of nuclear power units. 
Presently, there are only a small number of papers dealing with this topic in the literature. As an 
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example, Ozar et al. [8] measured dispersed phase characteristics (local gas fraction, specific 
interfacial area and phase slip velocity) but the mean and turbulent characteristics of the continuous 
phase left undetermined. All these imply the investigation of bubbly flows in annular channels is of a 
high importance. 

Probably, the most crucial problem that one faces when studying a bubbly flow is the choice of 
measurement techniques. Among a large number of different approaches for two-phase media 
diagnostics, two main categories are distinguished: intrusive and contactless. All contact methods 
allow only point measurements of various flow characteristics and most of them have a high temporal 
resolution. In an overwhelming majority of the researches, right intrusive techniques are 
conventionally applied. Non-intrusive methods are, as a rule, optical and are conversely employed to 
visualize or measure instantaneous spatial distributions of certain quantities within a flow region of 
interest but their temporal resolution is relatively low, except for LDA and PDA. The principal 
limitation of all optical approaches is that they can be applied only when the bubble density is 
sufficiently low (commonly at void factions of about 1%). Nevertheless, during the last two decades 
the optical methods have been developed considerably and are now utilized more and more frequently, 
with their temporal resolution increasing progressively. This makes their use nowadays more 
preferable and profitable. 

In the paper, a bubbly upward flow in an annular channel is studied experimentally at the same Re 
= 12,500 for several gas volume fractions β = 0, 1, 2% and the same bubble size by means of a 
combination of high-speed particle image velocimetry and planar fluorescence for bubbles imaging – 
PFBI (see [9, 10]) approaches. We report here on a visual analysis of high-speed images registered by 
a shadow photography (SP) and PFBI techniques to determine the mean bubble size, their velocities 
and distributions across the annular flow, as well as on PIV measurements of spatial distributions of 
instantaneous velocity inside the annulus, with a special emphasis put on the effect of dispersed phase 
on the flow mean velocity and turbulent fluctuations profiles. 

2.  Experiment 

The bubbly annular flow was reproduced in the hydrodynamic rig in Kutateladze Institute of 
Thermophysics SB RAS. The experimental setup is of closed type and continuous operation. Its test 
channel is formed by two concentric tubes of roughly 2.7 m height made of transparent organic glass. 
The internal tube is constituted from three aligned sections with the outer diameter of DINT = 20 mm, 
while the external one is composed of five in-line parts with the inner diameter of DEXT = 42.2 mm. So, 
the hydraulic diameter of the annular channel is equal to DH = 22.2 mm. The inlet of the test section 
equipped with an immersion unit filled with quiescent distilled water to reduce optical distortions is 
located at the distance of 70DH from the annulus inlet for hydrodynamic stabilization of the flow (see 
Fig. 1). The distance from the test section outlet to the annulus outlet is 35DH to minimize the 
influence of downstream transformation of the pipeline, which can cause flow separation, acceleration, 
bending, vortex generation and so on. 

The operating fluid was also distilled water which was driven by a centrifugal pump equipped with 
a control module to vary the rotor speed. The flow rate was measured by an ultrasonic flowmeter. The 
water temperature was maintained constant at 30±0.1 °C in the test section by means of a thermostatic 
regulator filled with tap water as a heat-transfer agent and containing a tubular electrical heater, 
cooling circuit and aquarium pump to permanently blend the heat carrier. Cooling and heating in the 
thermostat was implemented by a PID-control system activating an electromagnetic valve to start/stop 
the coolant supply to the cooling circuit and a switching relay to loop/break the electric line to the 
heater. The liquid temperature was measured by heat-variable resistors placed in the test section, heat 
exchanger and settling tank. The Reynolds number based on the superficial liquid velocity V0 = 
4·QW/[π·(DEXT

2–DINT

2)] = 0.45 m/s, where QW is the water volume rate (measurement error is 2%), and 
DH equaled approximately to 12,500. 

In order to saturate the flow with bubbles, an air-water mixer of a special design was used to 
provide a quasi-monodisperse size distribution of the bubbles. The air was supplied to the mixer by a 
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compressor through a couple of filters of rough (5 µm) and fine (0.01 µm) cleaning. The air 
overpressure at the mixer inlet was specified in the range of 9.8–19.6 kPa depending on the air volume 
flow rate QA by a high-precision reducer. The air temperature, pressure and flow rate were measured 
together by a thermal mass flowmeter (TSI model 4140) with the measurement uncertainties 0.1 °C, 
0.1 kPa and 2%, respectively. Different volume gas fractions β = QA/(QW+QA) in the annular flow were 
achieved by changing QA using a needle valve. In experiments, β possessed the following values: 0, 1 
and 2%. The mean diameter of the bubbles DB was approximately 0.8 mm for all β. 

 

Figure 1. A photograph of the test section of 
the annular channel with the immersion unit 
filled with distilled water. Fragments of the 
laser head and camera lens are also visible in 
the picture, which displays the arrangement of 
the measurement system. 

For the implementation of PFBI approach (which details are given in [9, 10]) to visualize bubbles 
in the flow, the water was merged with Rhodamine 6G as a fluorescent dye, the concentration of 
which was relatively low (about 86 µg/l). So, the water properties, especially viscosity and surface 
tension, can be considered unchanged. As bubbles illuminated by a laser light produce bright glares in 
images and, thereby, contaminate raw data, a laser-induced fluorescence (LIF) approach was applied 
to avoid their undesirable effect on PIV measurements. For this, fluorescent seeding particles made of 
polymethyl methacrylate filled with Rhodamine B of MicroParticles GmbH production (hydrophobic, 
size distribution 1–20 µm, wavelength range 550–700 nm) were added into the operating liquid to 
perform PIV measurements. 

In order to illuminate and register the bubbles and tracers suspended in the flow, a PIV-system with 
a high temporal resolution consisting of a pulsed Nd:YAG Photonics Industries DM-532-50 laser 
(wavelength 532 nm, repetition rate 15 kHz, pulse duration 10 ns, pulse energy 15 mJ), Photron 
FASTCAM SA5 CMOS-camera (digit capacity 12 bits, resolution 1,024x1,024 pix., acquisition rate 7 
kHz) equipped with a Sigma DG Macro 105 mm f/2.8D lens, a system of extension rings of 116 mm 
cumulative length and a low-pass optical filter (transmission edge at 570 nm) and Berkeley Nucleonics 
Corporation pulse/delay generator (model 575) for external synchronization was employed (Fig. 1). 
The distance between the camera and the measurement plane was roughly 395 mm. The magnification 
of the optical system was 1.8, which allowed us to reduce the plane dimensions of the measurement 
region approximately to 11.5x11.5 mm. The thickness of a laser light sheet was about 1 mm in the 
measurement section that passed through the annulus axis. In the experiment, the recording rate was 5 
kHz. 

The raw data (a series of 10,000 PFBI snapshots for each regime) gathered continuously during 2 
seconds were processed using a PC with “ActualFlow” software [11]. At first, two procedures, namely 
subtraction of the mean two-frame intensity field averaged over the whole sample range and masking, 
were successively applied to enhance the quality of the registered images and to remove the areas 
corresponding to shadows from the subsequent calculations. Velocity fields were calculated using the 
iterative cross-correlation algorithm with a continuous window shift and deformation and 75% overlap 
of the interrogation windows. In addition, at this step of processing the local particle concentration 
was accounted for. In order to have a relatively large dynamic range, the initial size of the 
interrogation window was chosen to be 64x64 pixels but it was subsequently reduced so that the final 
interrogation window was 8x8 pixels, which provided a high enough spatial resolution. The obtained 
instantaneous velocity vector fields were then validated with the following procedures: peak validation 
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with the threshold of 2.0, adaptive median 7x7 filter and cluster validation with the coefficient of 50 
[12]. 

3.  Results 

Results of the bubbly flow visualization by both SP and PFBI are shown together for different void 
fractions in Fig. 2 to facilitate a direct comparison between the methods. As seen, an analysis of the 
images is considerably complicated due to several reasons. First, both types of the images are 
noticeably distorted from the outer side (at the left) because of the annulus external tube curvature. 
Second, PFBI patterns of the bubbles located close to the channel walls are partial (Fig. 2-b) because, 
in the experiment, these bubbles are not illuminated by the fluorescent dye emission from the side of 
both internal and external tubes, so automated identification of such bubbles is extremely difficult. 
Further, out-of-focus bubbles corresponding to dark blurred regions in the PFBI images (Fig. 2-b) and 
spatially situated in front of the measurement section often overlap in-focus bubbles with sharp bright 
borders. This can result in an underestimation of the local gas fraction and an increase of its 
measurement uncertainty, especially in the near-wall region at higher β. Finally, the bubble and tracer 
patterns are substantially merged (Fig. 2-b), which makes it difficult to distinguish the signals from the 
dispersed and continuous phases and, thereby, correctly calculate the mean velocity and turbulent 
characteristics in the flow. 

    

Figure 2. Examples of instantaneous images of the bubbly annular flow captured by (a) shadow 
photography and (b) PFBI approach for (1) β = 1% and (2) β = 2%. The external wall of the annular 
channel is at the left-hand side of the images, while the inner one is at the right. In case of PFBI, 
bright spots correspond to seeding particles used for PIV measurements. 

Figure 2 also demonstrates that the bubble shape is spherical. The mean bubble size was estimated 
to be roughly DB = 0.8 mm. Most of the bubbles were found to move close to the annular channel 
walls rather than in its central part, which is connected with the balance of forces acting on the bubbles 
in the flow. This implies that the profile of the local gas concentration across the annulus is saddle-
shaped. According to [1-3], such a trend is typical for upward pipe flows containing small bubbles. A 
saddle-shaped profile can cause a redistribution of local characteristics in a two-phase flow in 
comparison with those for the single-phase flow and, thereby, change heat- and mass-transfer 
parameters of the flow [2]. In order to recognize bubbles in the PFBI images, a correlation-based 
algorithm [9] was used. This processing procedure divides a bubble pattern into several sectors and 
calculates the correlation coefficient between a part of raw PFBI image and a corresponding one of a 
2D Gaussian mask independently for each of the sectors and, thus, allows an identification of 
overlapped and partially illuminated bubble patterns. Its output is positions of bubble centers and their 
radii. Analyzing the shift between bubble positions in successive images, it is possible to evaluate its 
instantaneous velocity (the simplest PTV approach). 

Time variation of the measured bubble velocities in the annular upward flow is presented in Fig. 3. 
For this, all the bubbles were divided into three categories depending on their transverse coordinate: 
located in the central part of the channel and near the internal and external walls, using the criterion of 
0.2 < x/L < 0.8 for the central region, where L = (DEXT–DINT)/2 = 11.1 mm. The bubble velocity is 
observed to change in time by maximum 40% (Fig. 3). For approximation, the mean velocity of the 
bubbles moving in the central part was also calculated with the following formula [13]: 
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 VB = С·V0+VT, (1) 

where VB is the measured bubble velocity in the two-phase annular flow, С is a proportionality 
coefficient equaled to 1.2 [13], VT = 0.09 m/s is the terminal velocity of an air bubble rising in a 
quiescent water. As seen (Fig. 3), this approximation is in a good agreement with the measurements. It 
is worth noting that such a trend is common for all bubbles moving in the central part of the annulus. 
Thus, this value of C = 1.2 can be recommended for the drift-flux model under conditions similar to 
the present ones. 

 

Figure 3. Time dependence of the rising 
velocity of air bubbles in different locations 
across the annulus (β = 1%). The estimation 
of the bubble velocity in each location was 
based on consideration of only one bubble. 

In the central part of the annulus, the mean liquid velocity is equal to about 1.2 for all β (see Fig. 4-
a), which is characteristic for turbulent fluid motion in channels. Unlike the case of fluid motion in 
axisymmetric pipes, the velocity maximum of the single-phase annular flow is not at the duct center 
but somewhat (x/L = 0.461) shifted to its inner wall. Turbulent fluctuations are in the range of 0.06–
0.08V0 in the central part of the annular channel and gradually grow up to 0.18V0 when approaching 
the walls (Fig. 4-b). An increase of the volume gas fraction leads to a further displacement of the mean 
velocity maximum to the internal wall (Fig. 4-a), so that it is located at x/L = 0.425 and 0.387 for β = 1 
and 2%, respectively. Turbulence intensity rises across the whole annulus duct when the volume gas 
fraction increases. For β = 2%, it reaches 0.12V0 in the central flow region and ῦz/V0 = 0.28–0.3 near 
the walls (Fig. 4-b). Moreover, the transverse dimension of the near-wall region where turbulent 
fluctuations are high is several times larger for the external wall (0.1L) compared to the internal one 
(about 0.02L). 

  

Figure 4. Profiles of the longitudinal component of (a) the mean velocity and (b) its turbulent 
fluctuations (r.m.s. values) of the continuous phase in the annulus cross-section for different void 
fractions. z- and x-axes are directed downstream and crosswise. The internal and external walls of 
the annulus are located at x/L = 0 and 1, respectively. Only every fifth measured point is shown. 
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4.  Summary 

The bubbly annular upward flow with void fractions up to β = 2% and the mean bubble size equal to 
0.8 mm was for the first time studied by a combination of PIV/PFBI/PTV approaches at the Reynolds 
number Re = 12,500. Under such conditions, the air bubbles were found to tend to migrate to the near-
wall regions. Bubble velocities are higher in the central part of the annulus compared to those in the 
near-wall regions. An increase of the volume gas fraction results in redistribution of the mean velocity 
across the channel so that its maximum shifts to the inner wall and intensification of turbulent 
fluctuations over the whole channel cross-section up to two or three times for β = 2%. 
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