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Abstract. New physical experiments in the Institute of Thermophysics SB RAS allow one
to investigate structure of the flows of liquid layers being under action of the co-current gas
flux. The flow topology is determined by four main mechanisms: natural and thermocapillary
convection, tangential stresses induced by the flow of gas and mass transfer due to evaporation
at the interface. Mathematical modeling of the fluid flows in an infinite channel of the
rectangular cross section is carried out on the basis of a solution of special type of the convection
equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas phase
and evaporation at the thermocapillary interface are taken into consideration. Numerical
investigations are performed for the liquid-gas (ethanol-nitrogen) system under normal and
low gravity.

1. Introduction

The present consideration is devoted to modeling of the convective fluid flows with evaporation
using the new exact solutions of the convection equations. Obtaining the exact solutions of the
governing equations has become more relevant because of the effective opportunity to model
the real fluid flows [1, 2]. The solution of special type of the Boussinesq approximation of
the Navier-Stokes equations can be called a generalization of the well-known Ostroumov-Birikh
solutions [3, 4] for three dimensional case with respect to evaporation at interface. The group
nature of the Birikh solutions has been analyzed in [5]. In [6] the three dimensional exact
solution has been constructed to describe the two-layer fluid flows in an infinite channel in the
non-axis-symmetrical case.

The fluid flows with an interface being under action of an adjacent gas flux are the subject of
many experimental and theoretical investigations in the last decade [1, 2]. A closer interest in
such problems is explained by need of study of the phenomena in the liquid media and features
of the flow structure caused by the gas flow and gas flow related evaporation effects. The
physical experiments are an important motivation for improvement of theoretical understanding
of evaporative convection. One of the first examples of the solutions of the problems of two-layer
flows with mass transfer at the ”liquid-liquid” interface has been obtained in [7]. In [8, 9] the
exact solutions, described the two-layer flows with evaporation, have been constructed in the
case of a given specific gas flow rate [8] and under closed flow conditions in each phase [9].
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Stability of the convective flows with evaporation and the effects of the intensity of the thermal
load on the channel walls on the stability characteristics have been investigated in the problem
statement without taking into account the Soret effect [10].

2. New exact solutions of the two-layer fluid flows with evaporation at interface
The stationary solution of the Boussinesq approximation of the Navier-Stokes equations

1
(vi-V)v = *;Vpi + v Av; — g(BT; +70), (1)
div v; =0, (2)
v - VT = xi(AT; + 0AC), (3)
Vo - VC = D(AC + aAT) (4)

are constructed. The equations (1)-(3) without marked terms are used to model the flows of the
liquid in the lower layer (figure 1). The equations (1)-(4) are considered to model the flows in the
upper layer so that the Dufour and Soret effects or the effects of diffusive thermal conductivity
and thermodiffusion [11-14] in the gas phase are taken into account. Two layers are separated
by the thermocapillary interface. By construction of the exact solution of the equations (1)-(4)
the interface will be given by the relation x = 0. The Cartesian coordinate system is chosen so
that the gravity acceleration vector g (g = |g|) is directed opposite to the Ox axis (figure 1).
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Figure 1. Flow domain.

Figure 2. Flow picture: velocity field;
Gr =470, T = 0.5.

The fluids (the liquid and the gas-vapor mixture) fulfill the infinite horizontal layers €; and
QQS
O ={(z,9,2): —zo<x<0,0<y<y’, —0c0<z<o0},
Q= (z,y,2): 0<z<2’,0<y <y’ —00 <z < o0}
We assume that the boundaries of the domains Qy, Q9 defined by z = —2¢, 2 = 2%, y = 0y = 3°
are the fixed impermeable boundaries.
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The exact solution is characterized by dependence of the components of the liquid v; =
(u1,v1,w1) and gas velocity vy = (ug, v2, w2) on the transverse coordinates (z,y). The functions
of temperature 17, T, pressure (deviation of pressure from the hydrostatic one) p1, ps and
vapor concentration C have the terms O, O3, q1, g2, ® similarly depending on the transverse
coordinates (z,y):

up = ui(z,y), v = vi(2,y), w; = wi(z,y), (5)

p1 = —Ap1B1gzz + qi(x,y), p2 = —Ap2fagrz + Bpaygrz + q2(x,y), (6)
Ty = —Az+ O1(z,y), To = —Az + Oy(z,y), (7)

C =Bz+ ®(z,y). (8)

The following notations are introduced: p; is the density, v; is the kinematic viscosity coefficient,
X; is the thermal diffusivity coefficient, [3; is the thermal expansion coefficient, v is the
concentration coefficient of density, the coefficients a and § characterize the Soret and Dufour
effects in the gas-vapor layer. The coefficients A and B determine the longitudinal temperature
and concentration gradients along the interface. Subscript ¢ is responsible for belonging to the
liquid €4 (¢ = 1) or gas-vapor phase Qg (i = 2) (see figure 1).
The kinematic
Uy = U = 0 (9)

and dynamic conditions (projection on the vectors tangent to the interface) should be fulfilled
on the interface x = 0:

p1vi(uty + vig) — pava(ugy + vog) = —o7O1y, (10)

PIVIW3g — PavoWa, = Aor. (11)

Here 0 = 09 — op(T — Tp) is the surface tension (op = const > 0) . The dynamic boundary
condition in projection on the normal vector n that coincides with the unit vector of the Oz
axis is [6]:

—q1 + g2 + 2(p1v1ure — pavaug,) = 0. (12)

Conditions of continuity of tangential velocities and temperature are assumed to be fulfilled on
the thermocapillary interface z = 0:

v = vg, wy = wa, 11 =Th. (13)

At £ = 0 the heat transfer condition with respect to the diffusive mass flux due to evaporation
and the mass balance equation are formulated with respect to the Dufour and Soret effects:

l'£1T1gC - KJQTQJ; - 5I£QC = —)\M, M = —DpQ(Cg; + aTgx). (14)

The linearized form of an equation for saturated vapor concentration at interface is introduced
[8-10]:
C’$:0 = C*(1+€(T2 —Tg)). (15)

Here C, is the saturated vapor concentration at To = Ty (Tp is equal to 20° in [7], [9]),
e = M\u/(R*TE), X is the latent heat of evaporation, u is the molar mass of the evaporating
liquid, R* is the universal gas constant. The relation (15) is a consequence of the Clapeyron —
Clausius equation and the Mendeleev—Clapeyron equation for an ideal gas.

On the fixed impermeable walls of the channel the no-slip conditions for velocity fields

z=-z0,2=2",y=0,y=4": v; =0 (16)
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and the conditions of thermal insulating of the lateral walls
r=-20: Tz =0, 2=2": To, =0; y=0: Ty, =0,To, =0; y=9": Ty, =0,Tp, =0 (17)

are prescribed. The case of absence of vapor flux on the upper and lateral rigid boundaries is
studied in the present statement:

wsz:szo;yzo,y:yO:C’y:O. (18)

The analytical technique to model three-dimensional convection of the immiscible fluids in the
stationary case with evaporation at the interface is complemented by the numerical investigations
so that construction of the three-dimensional flows in a channel of the rectangular cross-section
with the interface will be completed. Constructing of the stationary solutions of type (5) - (8)
for the two-layer convective fluid flows is reduced to sequential solving of the corresponding two-
dimensional problems for the functions wi(z,y) and wa(z,y), ©1(z,y) and Oz(z,y), and ®(x,y)
and for the stream functions 1 (z,y), ¥2(z,y) and vorticity and w; (z,y), wa(x,y) instead of the
transverse components u;, v; of the velocity vectors (u; = (¢)y, vi = —(¥i)s, @ = 1,2). The two-
dimensional problems are computed in the domains Q; (Q; = {(z,y) : —20 < 2 < 0, 0 <y < 3°},
Qo ={(z,9): 0 <z < 0<y<y}).

2.1. General scheme of solution of the coupled problem
(i) We assume that the velocity components u;, v; are found and will proceed from a given
state.

(ii) With given w;, v; we solve numerically the corresponding problems to find the third
components w; (i = 1,2) of the velocity vectors.

(iii) To find the unknown terms ©; (¢ = 1,2) in the temperature functions (7) and ® in the
concentration function (8) we solve numerically the equations followed from the equations
(3), (4) with the boundary conditions which are the consequence of the relations (13)-(18)
on interface and fixed boundaries.

(iv) With found ©; and ® we solve numerically the systems of the equations for the stream
functions and vorticity ¥;, w; (i = 1,2) with boundary conditions followed from the relations
(9)-(13) and (16) on interface and fixed boundaries.

(v) Transition to the step (i) should be carried out. The components u;, v; (i = 1,2) of the
velocity vectors will be recalculated. Iteration process is organized similarly to [6] with use
of the convergence criteria.

The numerical procedure is based on the longitudinal transverse finite difference scheme
known as the method of alternating directions [6, 15]. Note that the conditions of continuity
of temperature (13) and of the heat transfer at interface (14) are used to find the interface
temperature and, consequently, the temperature distributions in both phases. The form of the
exact solution (7), (8) dictated by the convection equations (1)-(4) will lead to the dependence
between A and B due to the interface conditions (15). Continuity of the tangential velocities
(see (13)) and dynamic condition (11) help to find the values of w; and w9 at interface and the
third velocity components in both phases. The kinematic condition (9), the consequences of
the no-slip conditions (16) in terms of 11, 15 are used as the boundary conditions to find the
stream functions. The dynamic conditions (10), (12) written in terms of the stream function
and vorticity allows us to compute the interface values of vorticity wy and ws and, consequently,
the vorticity functions in both domains €27 and €2s.
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3. Numerical results

Numerical investigations are carried out in order to describe the possible flow topology for
the liquid-gas system like ”ethanol-nitrogen” with following physicochemical properties [16]:
p1 = 0.79 - 10° (kg/m?), po = 1.2 (kg/m3) , v; = 0.15-107° (m?/s), vo = 0.15-10~* (m?/s),

B = 0.108 - 1072 (K1), B = 0.367- 1072 (K1), v = —0.62, k; = 0.1672 (W/(m K)),
ke = 0.2717-1071 (W/(m K)), or = 0.8 -107* (N/(m K)), D = 0.135 - 10~% (m?/s), ¢ = 0.01
(K1), C. =0.1.

We investigate the flow topology computed with following values of the Grashoff number
Gr = {47000,470}, which correspond to the conditions of normal (g = go = 9.81m/s?)
and low gravity (1072go m/s?) and to the characteristic temperature drop T, = 10K. Here
Gr = (1 T,gl3 /v, 1 is the characteristic length (I = 1072 m). The non-dimensional longitudinal
temperature gradient T corresponds to the dimensional one A: T = Al /T. The non-dimensional
Soret @ and Dufour § parameters are determined as follows: @ = a7k, § = §/T.
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Figure 3. 2D-projection of velocity field (2D cross-section picture): Gr = 470, T = 0.5 (left);
Gr = 47000, T = 0.1 (right).

Figure 2 presents the possible three dimensional flow pictures under conditions of low gravity
with following values of the parameters: Gr = 470, T' = 0.5, @ = 0.001, 6 = 0.00001 (we look
from ”above” from the direction of z- axis on the flow structure). The translational character
of the liquid flow can be characterized as a dominant one in the case of flow structure presented
in figure 2. In order to visualize a rotational character of the flows we multiply the first and
second velocity components of the liquid by factor 10. Flow of the gas-vapor mixture in the
upper layer is characterized by clearly marked symmetric two-vortex structure with the centers
located close to the interface in the ”corners”. Two slight rotating vortexes transfer the liquid
particles in the z- direction (upward motion). To describe the flow topology more correctly we
present also the flow projection in the cross-sections. The 2D cross-section picture (see figure 3,
left picture) confirms a rotational nature of the flow. The flow of the liquid in figure 2 can be
characterized as a rotational motion of a smaller intensity than in the gas layer.

The intensity of the liquid flow depends on intensity of the gravitation field or interface
temperature regime. More intensive rotational flow has been observed by normal gravity
(Gr = 47000). Figure 3 (right picture) demonstrates more complicated character of the fluid
flow. Two ”corner” vortex structures appear by weaker action of the longitudinal temperature
gradient along the interface (here T = 0.1; the same values of the Soret and Dufour parameters
have been used: @ = 0.001, § = 0.00001). It has been found that in this case the flows have
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a combined translational and rotational character. The motion becomes more complicated and
we can observe the reverse flows near the solid ”bottom” wall.

4. Conclusions

In this paper a stationary coupled problem of the gravitational and thermocapillary convection
with respect to the diffusive mass transfer at the interface due to evaporation is studied.
In the problem of convective fluid flows a new exact solution is constructed in the three-
dimensional case. This solution is the analogue of the Ostroumov—Birikh solution of the
convection equations. In gas-vapor phase the Dufour and Soret effects are taken into account
additionally. It describes a joint flow of an evaporating viscous heat-conducting liquid and gas-
vapor mixture in an infinite horizontal channel of the rectangular cross section. Reduction of
the common problem to several two-dimensional problems can be carried out so that the real
three-dimensional flows are described by the two-dimensional statements. The flows of both
fluids (of a liquid and gas-vapor mixture) are computed. They are characterized as translational
motion and progressively rotational flow and can be realized in the various forms. The numerical
investigations allow one to analyse the possible flow structure with respect to the intensity of
the gravitation field and longitudinal temperature gradient created on the interface.
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