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Abstract. The waves in a bubbled incompressible liquid with Van der Waals gas in a bubbles 
being near critical points is considered in a frame of Gardner equation. It is shown that both 
coefficients on quadratic and cubic nonlinear terms in Gardner equation change the sign near 
gas critical point and it results the anomalous waves: negative and limited solitons, kinks, 
antikinks and breathers. The dynamics and interactions of these waves was studied numerically 
by high accuracy Fourier methods with periodically boundary conditions. In particular it is 
revealed that limited solitons always arise from initial distribution with a few identical soliton’s 
pair and stand stable in their form after numerous interactions. 

1.  Introduction 
The existence of rarefaction shock waves in Van der Waals gas was firstly shown by Zeldovich [1] 
under necessary condition of negative derivation 2 2/ 0V P∂ ∂ < . Zones of negative derivation bounded 
by curves 3,5 and 4,5 under adiabatic and isothermal conditions respectively was calculated in [1] and 
are shown on figure 1. Adiabatic anomalous zone appears only if adiabatic index 1.049γ <  is unreal. 

The situations radically changes if gas behavior is near isothermal. This condition can be achieved 
in a small gas bubbles in a liquid under intense heat exchanging during the wave’s pass. Since the 
second derivation near critical point can be vanished, the next term 3 3/V P∂ ∂  of series was considered. 
In this paper the strict yielding of Gardner equation for nonlinear waves in homogeneous bubbled 
liquid and its numerical calculations are presented. It appears that anomalous zones of positive third 
adiabatical and isothermal derivation being shown between curves 2,5 and 4,5 on figure 1 respectively 
in a frame of Gardner equation are much greater then for ordinary rarefaction shock waves in [1]. 

The Gardner equation was firstly yielded for inner waves in two layer liquid [2] where anomalous 
zones of changes the signs of quadratic and cubic terms is too narrow to observe it experimentally, the 
waves in bubbled liquid near critical point for some gases in bubbles as freons is easy to achieve and 
thus we predict the future experiments in bubbled liquid near critical point and observing all kind of 
exotic waves which exist in a frame of Gardner equation with changing signs of nonlinear terms. 

2.  Derivation of Gardner equation 
The homogeneous model of bubbled liquid in acoustic approximation xx ttP ρ=  [3] with mixture 

density definition 1 2(1 )ρ ρ ϕ ρ ϕ= − + , where 34 /3 R Nϕ π=  is gas void fractions, N  is bubble 
numbers in mixture unit volume in incompressible liquid results following wave equation for 
dimensionless pressure 0/p P P=  and dimensionless bubble’s volume 3 3

0/v R R=  

 2
0/xx ttp v cγ= − . (1) 
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Here 2
0 0 0 0/c Pγ ρ ϕ=  is sound velocity in a mixture, indexes 1,2  and 0 refer to liquid, gas and initial 

values respectively. For bubble’s volume we use dissipationless Reley equation  

 
2

1/ 3 4 / 3 2 0
2

1 ( )
6tt t

wv v v v p p
γ

− −− = − , (2) 

where 2 2
0 0 1 03 /w P Rγ ρ=  is bubble’s resonant frequency, 2 2 0/p P P=  is dimensionless gas pressure, 0R  

is initial bubble’s radii. In adiabatic equation of state for Van der Waals gas 

 ( ) ( )2 2
2 0 0 0/ ( ) / ( )P a V V b P a V V bγ γ+ − = + − ,  

two parameters being expressed through critical values 2
k k k3 ,  / 3a PV b V= =  results its dimensionless 

equation of state 2 ( )p v  

 0
2 0 0 0 2( ) (1 )(1 ) ( ) ap v a b v b

v
γ γ−= + − − − , (3) 

where 2
0 0 0 k 0 k3/ ,   1/ 3 ,   / ,   /a V P b V V V V P P P= = = = . For weak but finite amplitudes waves 

nonlinear system (1), (2), (3) can be reduce to Gardner equation if we expand (3) to Taylor’s series 
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Figure 1. The borders of anomalous zones : 1 – T 0α = , 2 – 

T 0β = , 3 – S 0α = , 4 – S 0β = , 5 – binodal. 
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Substitute (4) into linearized Reley equation, twice differentiate it by x  and take into account (1) we 
come to Boussinesq equation for volume perturbation 1v v= −  

 2 3
2 2
0 0

1 1 0xx tt xx xx xxtt
A B Cv v v v v

c wγ γ γ
− − + + = . (5) 

Transition from (5) to Boussinesq equation for dimensionless pressure perturbation 1p p= −  can be 
done with linear link 1v A p−= −  in (4) 

 2 3
2 2 3 2

1 1 0xx tt xx xx xxtt
B Cp p p p p

c A A wγ γ
− − + + = , (6) 

where 2 2 2 2
0 0/ ,   c c A w w Aγ= = . For the waves propagating in one direction (6) reduce to Gardner 

equation, which preferable to write in dimensionless variables ,   ,   2 /x xk t ckt k w c′ ′= = = , 
( 1) /12u p γ γ= +  in coordinate system moving with c velocity (all primes further are omitted) 

 26 6 0t x x xxxu uu u u uα β+ + + = , (7) 

where equation coefficients 

 
2 2 3 3

2 2
2 3

2 2

(d / d ) (d / d ),   
12(d / d ) 24(d / d )

S S

S S

p v p v
p v p v

α β= = −  (8) 

can be expressed through coefficients , ,A B C  from (4). The equations of curves 0α =  and 0β =  

result to follow equations on dimensionless PV  diagram 

 
2 3

4 3 5 3

2(3 1) 3 8(3 1) 30 :    ,    0 :    .
( 1) 3 ( 1)( 2)

V VP P
V V V V

α β
γ γ γ γ γ

− −
= = − = = −

+ + +
, (9) 

The curves of zero derivations (9) are shown in figure 1 as Tα , Tβ  under isothermal conditions 

( 1γ = ) and as Sα , Sβ  under adiabatic conditions ( 1.049γ = ). Curves T 0α = , T 0β =  and bimodal 

curve divide areas on PV  diagram near critical point onto three isothermal anomalous zones: zone I 
( T T, 0α β < ), zone II ( T T0,   0α β< > ) and zone III ( T T, 0α β > ). Analogous adiabatic zones linked 
with curves Sα , Sβ  are much less and so do not marked on figure 1. Beyond these three zones the 
cubic nonlinearity looses his sense and instead (7) we must take ordinary KdV equation 
( 1,   0α β= = ). 
 

3.  Analytical and numerical solutions of Gardner equation 

The Gardner equation (7) which was firstly derived for inner waves in two layer liquid [2] is now well 
studied since it is can be transferred to modified Korteveg-de-Vries equation (mKdV) 

 2 23 / 2 6 0t x x xxxQ Q Q Q Qα β β− ⋅ + + = , (10) 

by Gardner substitution / 2u Q α β= −  and thus becomes fully integrable by Inverse Scattering 
Transform Method [4]. In turn the KdV equation 

 6 0t x xxxQ QQ Q+ + = ,  

can be transform to Gardner equation (7) by generalized Miura transform 
2 3 1/ 2 2/ / ( ) /xQ u u uα β α β α= + + − , but reverse transform from Gardner to KdV is possible only if 

0β <  when differential relation between u  and Q  becomes real. 

Equation (7) has the stationary solution in a form of positive u+  and negative u−  solitons 
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α α β ξ

± =
± +

, (11) 

where x Utξ = − , which transform to limited soliton with amplitude max /u α β=  if 0β <  and U  

coming to 2 /α β− . Solitons of both polarities u± , which exist in zones II, III are shown in figure 2. 

Transition of negative solitons to limited soliton in zone I if 2 /U α β⇒ −  are shown on figure 3.  

Limited soliton presents itself superposition of kink ( m 0u > ) and antikink ( m 0u < ) step waves 

 ( )
2

2
m m m

3( ) th ,    2
2 2

u u u U uα αξ βξ β
β β

= − − = − . (12) 

with shifted phase and amplitudes m / 2u α β= ± . Another valuable amplitude of kink and antikink 

(12) is m 3 / 2u α β= ±  when their propagation velocities U  are zero. 

More information about stationary waves gives the analyses of phase plane ( ,u uξ ), searching out 

separatrix, limit cycles and singularity points, where d / du uξ  does not determined. According to first 

integral of (7) 2 1/ 2( ) ( 2 / 2)u u u U u uξ α β= ± − −  there are always three singular points: 0uξ = , 1 0u = , 
2 1/ 2

2,3 [ 2 (4 2 ) ]/u Uα α β β= − ± + . First point is always a saddle. Second and third are centre points if 

0β > . Separatrix which refer to solitons begin and end at saddle, passing around the centers where 
there are numerous closed curves referring to conoidal waves. If 0β <  first and second points are the 
same, but third one is saddle and thus exists only one polarity solitons and conoidal waves. In special 
case /U α β= −  two separatrix referring to kink and antikink connect both saddles. Phase plane for 
the case 1α β= = − , 0.9U =  are shown on figure 4. Bold lines are the separatrix. 

Second class of analytical solutions of Gardner equation are breathers. They exist only for positive 
0β >  and represent itself the envelop waves on substrate. The breather of mKdV at 1β =  

 

 

 

Figure 2. Positive u+  and negative u−  solitons 
(11) at zones II, III at 1α = , 5β = , 3V = . 

 Figure 3. Normal and limited solitons (11) at 
zone I: 1α = , 5β = − , 1 – 0.7,U =  2 – 0.9,U =  

3 – 0.999,U =  4 – 51 10 ,U −= −  5 – 71 10U −= − . 
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, (13) 

is also a breather solution of (7) after Gardner substitution. Here 3 2
1 1 1 1 2 2 1( 3 ) ln( / )k x k k k t k kϑ = − − + , 

2 3
2 2 2 1 2(3 )k x k k k tϑ = − − , 1,2k  are wave numbers. 

Numerical solutions of Gardner equation was found by high accuracy Fourier method with 
periodical boundary conditions. Due to connection the end and beginning of x  integrating interval in 
Fourier method, wave dynamics and it’s interactions can be observed during unlimited time. 

The breakup of initial negative Gaussian wave onto four pairs of ordinary soliton and one limited 
soliton are shown in figure 5. It is well seen that after fifteen round race of limited soliton and more 
then hundred interactions soliton pairs are stayed stable. Soliton’s pair dynamics is observed firstly. 

More complicate interactions of three breathers (13) with common 1 0.5k =  and 2 1,  2.5,  5k =  are 
shown in figure 6. The interactions arise because of different and negative propagating velocities 
which are proportional to 2k , so the first and the fastest breather with 2 5k =  run down the second and 
third ones at 0.523t =  and 1.866t =  respectively. After a long time 17.17t =  breathers running in 
circled integrating interval and nineteen breather’s elastic interactions their forms do not changed. 

 

 
 

Fifure 4. Phase plane of Gardner equation’s stationary solutions. 
 

 
Figure 5. Long time evolution and interactions of soliton pair and limited soliton 
precipitated from initial Gaussian wave at 1.α β= = −  
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Figure 6. Interactions of three breathers (13) at 1α β= = . 

 

4.  Conclusions 
It is shown that in bubbled incompressible liquid with Wan der Waals gas in bubbles pressure 

waves can be correctly considered in a frame of Gardner equation, with coefficients of quadratic and 
cubic nonlinear terms being proportional to 2 2/V P∂ ∂  and 3 3/V P∂ ∂  respectively. 

The analyze of nonlinear coefficients on ,P V  diagram showed three ample anomalous zones 
where their signs are differed from those ones in ideal gas if gas behavior is near isothermal. 

Since near isothermal behavior of gas bubbles in a liquid is easy to achieve, all known solutions of 
Gardner equation like negative and limited solitons, kinks, antikinks and breathers in bubbled liquid 
near critical point are the anomalous waves and can be experimentally observed instead of rarefaction 
shock waves predicted by Zeldovich in pure nonideal gas being always adiabatic in shock waves. 

As illustrations the dynamics and interactions of these anomalous waves was studied numerically 
by high accuracy Fourier methods with periodically boundary conditions. In particular it is revealed 
that limited solitons always arise from negative initial distribution with a few identical soliton’s pair 
and stand stable in their form after numerous interactions. 
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