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Abstract. Stability problem of a liquid, situated on the inner surface of a cylinder, which 
rotates about its axis with a constant angular velocity, is considered. The flow is assumed to be 
non-isothermal, and thermocapillary instability is investigated. The temperature at the free 
boundary satisfies the condition of the third kind with a given Biot number. It is supposed that 
the free boundary is undeformable. The exact solution of Navier–Stokes and heat conduction 
equations is obtained. Neutral disturbances of this solution are considered, where Marangoni 
number is taken as the spectral number. Asymptotics of critical values of Marangoni number 
for long and short waves are found analytically. Neutral curves are constructed numerically for 
various values of independent dimensionless parameters. The dependences of critical 
Marangoni number on Reynolds number, Biot number and the aspect ratio are investigated. 

1.  Introduction 
The isothermal problem of a liquid layer on the surface of the rotating cylinder was studied in [1]–[9]. 

In [1, 3, 4, 6] the liquid layer on the outside of the cylinder was considered. In [1] principle of 
change of stability in weightless conditions was investigated. In [3] the existence of the stationary 
solution of the problem with free boundaries was proven in the exact statement; the evolution equation 
of the film dynamics was obtained in a thin layer approximation. This equation was studied in [6] 
later. In [4] a plane problem was considered by the techniques of lubrication theory, the behaviour of 
liquid rings around the cylinder was described.  

The motion on the interior surface of a cylinder was not sufficiently studied. In [2] the bifurcation 
of rotationally symmetric motions was investigated; a branch condition in terms of critical Weber 
number was obtained. In [5] the plane problem was considered; steady-state liquid-film profiles were 
found. In [7] the effect of surface tension on the stability of the film was examined in the case of the 
plane problem. Three-dimensional coating and rimming flow was studied in [8]. In [9] inertial 
instability of flows on the inside or outside of a rotating horizontal cylinder was investigated. 

In the present work the flow is assumed to be non-isothermal. Reasoning by analogy with [1], 
axisymmetric disturbances are considered as more dangerous. Thermocapillary instability of a liquid 
layer on the interior surface of a rotating cylinder is studied.  

2.  Mathematical model 
Let the viscous incompressible thermo-conducting liquid partially filling the space between two 

neighboring cylindrical surfaces of radii 1r  and 12 rr  . Surface 2rr   is the free one. The outer 

surface is rigid and rotates about its axis with a constant angular velocity ω. We will discuss the 
motion in a cylindrical coordinate system r, θ, z. It is assumed that gravity force is absent. Let us 

TPH IOP Publishing
Journal of Physics: Conference Series 754 (2016) 032004 doi:10.1088/1742-6596/754/3/032004

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

suppose that liquid density ρ, kinematic coefficient of viscosity ν and thermodiffusion coefficient χ are 
constant while the surface tension coefficient σ is a linear function of temperature T: 

 ,00 TT  
 

where 0 ,   and 0T  are positive constants. The temperature at the free boundary satisfies the 

condition  
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where q is the interfacial heat transfer coefficient, 
T  is the given temperature of the environment, n is 

the unit normal vector to the free boundary. The temperature at the solid wall satisfies the condition 
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is the given positive constant. 

The basic solution to the Navier–Stokes and heat conduction equations has the form 
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~p  is the constant,  1
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a  is the aspect ratio, 2Bi qr  is Biot number. 

We introduce dimensionless parameters, choosing as scales of length, velocity, pressure and 

temperature the quantities 2r , ,2r  2
2

2r  and 
a

TT
T S

lnBi1

)(Bi




  . The basic solution in terms of 

dimensionless variables has the form  
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Then we impose small axisymmetric disturbances on the basic solution. We seek velocity, pressure 
and temperature fields of the form 
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is Prandtl number. Navier–Stokes and heat conduction 

equations and boundary conditions are linearized. Reasoning by analogy with [10], we assume that the 
stability loss of the basic solution leads to an appearance of a new stationary solution. In this case 

Marangoni number 


 2Ma
Tr

  is taken as the spectral parameter. It is assumed that the free 

boundary is undeformable. The boundary value problem with a fixed domain is obtained: 
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Independent dimensionless parameters of the problem are Re, Bi and a. It should be noted that in 

the full statement (a deformable free surface), 
0

Cr


T
  (crispation number) is also the key 

dimensionless parameter, which characterizes the degree of deformation of the free surface by 
thermocapillary forces. Cr is small and in analogy with [10, 11] it is neglected.  

We seek the solution of the problem (2) – (4) in the form 
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and obtain the spectral problem  
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After elimination of В, С and ξ, the system and boundary conditions take the form  
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The spectral problem (5) – (9) for the parameter Ma is degenerate. Ma can be found uniquely for a 
given set of determinative parameters. The solution of the problem is determined up to an 
arbitrary multiplicative constant. So it can be supposed that  

,1)1()1(  AA      (10) 

and A can be found from the boundary value problem (5), (7), (10). Then ζ is found from the boundary 
value problem (6), (8). It can be shown using variation of parameters that 0)1(  . So Ma is defined 

uniquely from (9). 

3.  Asymptotics and numerical results. 
Asymptotics of neutral curves for the problem (5) – (9) are found analytically. 

Asymptotics for k→0 (long waves) have the form  
 

,
)ln41(4

)ln)1(2)1)()((1(ln)1)((2
)(

4

222222224

0
aar

rrarraaarra
rA






 

TPH IOP Publishing
Journal of Physics: Conference Series 754 (2016) 032004 doi:10.1088/1742-6596/754/3/032004

3



 
 
 
 
 
 

,2))))(Bi(Biln8r ))ln 4Bi3Bi(8Bi8 4Bi

3Bi2(4))16Bi(15(121))4Bi( 8(14 Bi2 12Bi

812(11Biln) ln Bi8 ln Bi)1(4))1( Bi1(4 Bi 4Bi

Bi344(ln2)ln8ln))1(812)51611(Bi()3(4

)12(5)(1()ln Bi1(ln16a(
)lnBi1)(ln41(64

Re
)(

22224222

422224442

224222442

2222224222

224234

40














arararar

rrarrarrr

rararaararr

aarararaara

rraara
aaa

r

 

  
  .0 ),1(

))1ln2(ln4)32(3(ln2)115(1)-(

lnBi1ln44364
Ma

244242222

42





 kO

aaaaaaaaaak

aaaa

 
 

Asymptotics for k→∞ (short waves) have the form  
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It should be noted that asymptotics for critical Ma values coincide with Pearson’s short-wave 
asymptotics for Ma [10]. 

Critical values of Marangoni number *Ma  and wave number *k are obtained numerically using 
Runge–Kutta method of the fourth order for various values of independent dimensionless parameters; 
the neutral curves on k, Ma plane are constructed.  

The figure 1 shows the neutral curves for different values of Bi when a = 1.1, Re = 1.  Critical 

values are 19.94 * k , 8793.2 Ma*   for 1Bi  ; 22.58 * k , 12107.78  Ma*   for 10Bi  ; 

23.74 * k , 15653.48 Ma*   for 20Bi  . Thus, with increasing Bi, *Ma and *k also increase.  

It should be noted that for water, when 8793.2 Ma *   and ,103 -2
2 mr   then .105 Cr -4  Thus, 

the neglect of Cr is justified. 

 
 

Figure 1. The neutral curves for a = 1.1, Re = 1 and various values of Bi. 
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The figure 2 shows the neutral curves for different values of a when Bi = 1, Re = 1. Critical values 

are 19.94 * k  8793.2 Ma*   for 1.1a ;  13.72,   * k  4107.37  Ma*   for 15.1a ; 10.57,  * k  

2406.07   Ma*   for 2.1a  Thus, with increasing a, *Ma and *k decrease.  
 

 
 

Figure 2. The neutral curves for Bi = 1, Re = 1 and various values of a. 
 
The figure 3 shows the neutral curves for different values of Re when Bi = 1, a = 1.2. Critical 

values are 10.57,  * k  2406.07   Ma*   for 1Re  ; 12.88,   * k  6441.86 Ma*   for 500Re .  

Thus, with increasing Re, *Ma and *k  also increase. 
 

 
 

Figure 3. The neutral curves for Bi = 1, a = 1.2 and various values of Re. 
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4.  Conclusion.    
For non-isothermal liquid, situated on the inner surface of the rotating cylinder, the exact solution of 
Navier–Stokes and heat conduction equations is obtained. The basic solution has only the azimuthal 
component of the velocity as non-zero, which is proportional to radial coordinate r. The pressure is the 
quadratic function of r and the temperature is the logarithmic function of r. Small disturbances are 
considered, where Marangoni number is chosen as the spectral parameter.  

Asymptotics of neutral curves for long and short waves are found analytically. The main term of 

asymptotics has the order of )( 2kO  when 0k  and )( 2kO  when k . Critical values of 

Marangoni number and wave number are obtained numerically for various values of independent 
dimensionless parameters. The dependences of critical Marangoni number on Reynolds  number, Biot 
number and the aspect ratio are investigated. It is obtained that the critical Marangoni number and the 
critical wave number increase with increasing Re and Bi, and decrease with increasing a.  

It should be noted that critical values of Rayleigh number *Ra  in the terms of the temperature 

gradient is proportional to 4)1( a  (see [12]) when Ma is not proportional to any degree of 1a . 

Thereby, it could be concluded that for thin layers ( 11a ) thermocapillary mechanism of 
instability dominates and the neglect of convection induced by buoyancy force is justified. 
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