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Abstract. The type of film flow whereby the fluid flows in the form of many streamlets is 
typically called a rivulet flow. Whereas an individual streamlet bounded by two contact lines is 
called a rivulet. Special attention has been paid to rivulet flows because of their practical value 
for a variety of devices in power engineering and chemical technology, such as absorbers, 
distillation columns, evaporators, and heat exchangers for the liquefaction of natural gas. In the 
present paper the waves in vertical rivulet are investigated analytically. The Kapitza-Shkadov 
model is used to describe the wavy rivulet flow since it was well proven in the study of 
nonlinear waves in falling liquid films over a wide range of Reynolds numbers. The equations 
of the wavy rivulet flow are derived on the basis of the weighed residual method. These 
equations turn out to be the projections of the Shkadov’s model equations on system of basis 
functions, constructed in special way. Linearizing these equations results in the dispersion 
relations for plane waves. The stability criterion for rivulet flows is deduced, and the analysis 
of dispersion relations depending on dimensionless parameters is carried out. 

1. Introduction 
Compared to uniform liquid film flows, rivulet dynamics exhibit several interesting features, such as 
the presence of movable contact lines and wetting angle hysteresis. Most theoretical studies, beginning 
with the pioneering study of Towell and Rothfeld [1], are devoted to stationary and smooth (without 
waves) rivulets flowing down an inclined plane as well as curved surfaces [2, 3]. Profiles of smooth 
rivulets and steady regimes of rivulet flows were calculated using both analytical methods in a 
lubrication approximation [2, 3] and numerical methods based on Navier-Stokes equations [4, 5]. In 
the simplest case of a thin rivulet flowing down a vertical flat surface, the rivulet profile was shown to 
represent an arc of a circle. 

The stability of a moving rivulet has been studied in a limited number of works. A linear stability 
analysis was performed in [6-10] based on Navier-Stokes equations for the normal mode (plane 
waves). In these theoretical studies the stability calculations of rivulet are executed in lubrication 
approximation, i.e. at very small Reynolds numbers and for plane modes of perturbations only. 
Alekseenko, Markovich and Shtork [11] performed the first detailed experimental study of the wave 
motion of a rectilinear rivulet for the case of liquid flow along the lower outer wall of an inclined tube. 
With application of the imposed periodic pulsations of the flow rate the periodic non-linear waves 
have been studied, new wave modes are found, and comparison to known two-dimensional film flow 
is made. In the papers [12, 13] method of PIV was applied in the first time to measure instantaneous 
velocity field in wavy rivulet. Alekseenko et al. [14] were the only researchers to present the results of 
experimental investigation on periodic, nonlinear waves on a rectilinear rivulet flowing down a 
vertical wall. Waves in rivulet flow were studied in a wide range of a Reynolds number and forcing 
frequency for various values of angles of wetting. In [15] the results of numerical simulations of three-
dimensional waves on the surface of a rivulet flowing down a vertical plate are presented. Various 
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characteristics of linear and nonlinear regular waves in the rivulet are obtained through numerical 
calculations as a function of the forcing frequency at different Reynolds numbers and contact wetting 
angles. Calculations were executed only for those conditions which were implemented in experiments 
[14] and comparison with experimental data was made. The comparison shows that the applied model 
adequately describes the shape of the wave surface of a rivulet. 

In the present paper the waves in vertical rivulet are investigated theoretically. On the basis of a 
weighed residual method the approach allowing simplify a problem is developed and dispersion 
relations for linear waves are deduced analytically at moderate Reynolds numbers. 

 
2. Theoretical model 
Let us consider a thin liquid layer flow over a vertical flat plate as a rivulet of constant width 2b. We 
introduce a Cartesian coordinate system Oxyz with the Ox-axis directed along gravity and the Oy-axis 
directed along the normal to the plate (figure 1b). We assume that the layer thickness h is substantially 
smaller than the wavelength  (long-wave approximation) and the rivulet semi-width b. All of these 
assumptions are in good agreement with experimental observations [14]. As a first approximation with 
respect to the small parameters   /h  and bhb / , the waves in a liquid layer may be described 
by the integral boundary layer (IBL) model [15], which was developed for three-dimensional long 
waves in a falling liquid film. The corresponding momentum and mass balance equations in 
dimensionless variables x/H0, z/H0, h/H0, q/qm, m/qm, t/tm are as follows 
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Here,   
h

udytzxq
0

,,  and   
h

wdytzxm
0

,,  are the liquid flow rates per unit width along the Ox and 

Oz axes, respectively, 2222 // zhxhh  . We choose the unperturbed film thickness H0 at the 

symmetry axis of the rivulet as the scale and introduce the scales of velocity 3/2
0gH , time 

0/3 gHtm  , and flow rate 3/3
0gHqm  . Here, 23

0 3/Re gHm   is the Reynolds number, 

Figure 1. (a) Visualization of wavy rivulet flow using the LIF technique (experimental 
setup of Alekseenko et al. [22], forcing frequency: 17 Hz) and (b) rivulet flow diagram. 
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  3/15Re/3 mFiWe   is the Weber number, 433 /  gFi   is Kapitza number,  is the surface 

tension,  is the density, and  is the kinematic viscosity of the fluid. With regard to the rivulet flow, 
these equations must be supplemented by the follows boundary conditions at the contact line (fixed 
contact line): 0 bzh , 0 bzq , 0 bzm . It is follows from (1), that h and q are even 

functions of coordinate z, and m is odd function of coordinate z. In case of a undisturbed flow (without 
waves) the partial derivatives on x and t in the equations (1) and also the flow rate m are equal to zero, 

thus a cross-section of rivulet is a parabola   22
0 /1 bzzh   and    zhzq 3

00  .  

Supposing hhh
~

0 , qqq ~
0 , mqm ~

0  we introduce a new functions h
~

, q~ , m~ . Instead of 

coordinate z we use the variable bz / . The function h
~

, q~ , m~  should have the finite values at a 

contact line, thus boundary conditions will be automatically fulfilled, since 01010    qh . 

Using h
~

, q~ , m~ , we rewrite the equations (1) as follows  
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Here, 2
0 1 h ,       
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3. The application of a weighed residual method for wavy rivulet flow model 
On interval 11    we define two different systems of orthogonal basis polynomials: even 

polynomials  j  and odd polynomials  j , ,3,2,1j  Let's spread out even functions h
~

 and 

q~  abreast on  j , and odd function m~  abreast on  j : 

    





1

,
~

j
jj txHh ,      






1

,~

j
jj txQq ,      






1

,~

j
jj txMm . (3) 

As a whole, relations (3) do not satisfy (2) (substitution in the equations gives the residual). According 
to a weighed residual method, the projections of a residual to basis functions should be equated to 
zero, as a result we obtain the system of differential partial equations for Hj, Qj, Mj. Coefficients of 
these equations are calculated through integrals from product of basis polynomials on function from . 
in the equations (2). 

We define a scalar product of polynomials  k  and  j  by means of weight function 

   321  g  as follows:      



1

1

 dg kjjk .  

Let's take the first even polynomial 11  . The second even polynomial we take as 
2

212 a , where the constant a2 is calculated by means of a condition of orthogonality 

021  . Thus, we obtain 2
2 91  . Each subsequent even polynomial 1n  is defined by 
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recurrence formula n
nnnn aaaa 2

1332211    , where constants 132 ,, naaa   are 

calculated from conditions of orthogonality of 1n  to previous polynomials n ,, 21 . Similarly, 

for odd polynomials we take 1 , and each subsequent polynomial 1n  is defined as 
12

1332211


  n
nnnn aaaa  , where constants 132 ,, naaa   are calculated by means 

of conditions of orthogonality of 1n  to previous polynomials n ,, 21 . Thus, we obtain the 

second odd polynomial 3/11)( 3
2   . Note the important property of the proposed basis, 

namely, near to a contact line the profiles of a thickness and flow rate are similar geometrically to 

corresponding profiles for a undisturbed flow, that is h~  21   и q~  321  . Thus the contact angle 
varies according to a wave phase.  
 
4. Plane waves 

In the most simple case each basis consist of one element: 1 ,  , that is  txHh ,
~
 , 

 txQq ,~  ,  txMm ,~  . It corresponds to a case of plane waves for which profile of wavy rivulet 
remains a parabola in any section. Let's project the equations (2) on correspondent polynomials. For 
this purpose the first and third equations (2) multiply on 11  , and the second equation (2) multiply 

on 1 . Then the equations are integrated on a variable  (integrals are calculated analytically), 
and we obtain  
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The first and third equations (4) are very similar to the equations of model [15] for two-
dimensional waves in a film, but differ in coefficients. Unlike a film flow, there are terms containing 
additional parameter b in (4).  

Let's linearize the equations (4) concerning small perturbations, supposing HH
~

1 , QQ
~

1 , 

where 1
~
H , 1

~
Q , 1M . As a result we obtain 
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4.1. Dispersion relations  

Let's present perturbations in the form of a traveling wave:  tCtxikHH a  )(exp
~

, 

 tCtxikQQ a  )(exp
~

,  tCtxikMM a  )(exp . Here, Hа, Qа, Mа. are amplitudes, k is a 

wavenumber, C is a wave phase velocity,  is a time increment of the wave. Substituting it in the 
equations (5), after some transformations yields system of two dispersion relations for  and C: 
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and in a film consists not only in coefficients of (6) but also available additional parameter b. The 
system (6) the same as in case of a film flow, is easily reduced to one quadratic equation with respect 

to 
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Here, sign "plus" corresponds to unstable mode, and the sign "minus" corresponds to stable mode (in 
the same way, as for waves in a film flow). For unstable mode C > 0 and the perturbations are growing 
( > 0) in some range of a wavenumber. For stable mode C < 0, and the perturbations are damping at 
any wavenumber ( < 0).  

4.2. Stability criterion of rivulet flow 
In an asymptotics 1Re m  (at k→ 0) from the second equation (6) we obtain 35/72C . Then 

from the first equation (6) we find 

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35
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it follows that long-wave disturbances can be unstable if A > 0. Thus a criterion of instability can be 

written as a condition for the rivulet half-width We
We
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


 6752.1
7932

12135
. This condition been 

applied to dimensional rivulet half-width is 
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
. Thus, at minbb   the 

rivulet flow is stable with respect to 2D disturbances of any wavelength.  
Calculated dispersion dependences are shown in figure 2 for Rem = 25 and various values of the 

dimensionless parameter b. From figure it is clear that reducing of parameter b leads to decreasing of 
the increment, and increasing of the phase velocity. Figure 3 shows dependence of increment on the 
wave number for various values of Reynolds number. From figure it is clear, that the range of 
instability on a wave number extends with increase of Rem. The maximum of increment also increases 
with growth of Rem. Figure 4 shows the dependence of increment on a wave number for Rem = 10 and 
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Figure 2. Increment  and phase velocity C of plane waves at Rem = 25 for various 
values of dimensionless parameter b: 1− 50, 2− 25, 3− 15 (water, Fi1/3=3270). 
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various values of Kapitza number. From figure it is clear that area of instability and the maximum of 
increment decrease with parameter Fi1/3 growth. 

5. Conclusions 
The 3D wavy rivulet flow has been studied theoretically. The approach reducing a problem to 2D one 
has been proposed on the basis of weighted residual method. The equations of the 2D rivulet flow 
have been deduced using projections of initial equations on the system of orthogonal polynomials. The 
system of equations for plane waves in the vertical rivulet has been deduced, and dispersion relations 
have been obtained. The stability criterion of rivulet flow has been deduced, and the analysis of 
influence of dimensionless parameters on dispersion dependences has been carried out. 
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Figure 4. Dependence of increment of plane 
waves on a wavenumber for Rem = 10, b = 10 
and various values of parameter Fi1/3: 1− 300,  
2− 600, 3− 1200. 
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