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Abstract.
This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind

Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade
with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure.
Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain,
hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude.
The system currently in use is based on frequency control, which involves some non-linearities
that make the system difficult to control. To make a linear controller, a different approach has
been chosen, namely making a controller which is not regulating on the input frequency, but on
the input amplitude.

A non-linear mechanical model for the blade and the motor has been constructed. This
model has been simplified based on the desired output, namely the amplitude of the blade.
Furthermore, the model has been linearised to make it suitable for linear analysis and control
design methods.
The controller is designed based on a simplified and linearised model, and its gain parameter
determined using pole placement. The model variants have been simulated in the MATLAB
toolbox Simulink, which shows that the controller design based on the simple model performs
adequately with the non-linear model. Moreover, the developed controller solves the robustness
issue found in the existent solution and also reduces the needed energy for actuation as it always
operates at the blade eigenfrequency.

1. Introduction
In order to guarantee continuous operation for its required lifespan, wind turbine blades from
Siemens Wind Power are subject to thorough testing. One of such tests is a fatigue test, which
is used as a random check of the structural integrity of the blade at an extended period of
time. So far, Siemens have been using a method for fatigue testing using a motor with a mass
extended by a connection rod. This is mounted directly on the blade, and through rotation
causes the blade to oscillate. In the mechanical nature of the blade, as interpreted in figure 1,
a periodic excitation will, after some time, cause the blade to oscillate at the same frequency,
for which the amplitude of deformation depends on the system gain and the input amplitude.
The maximum amplitude of deformation is at the mechanical eigenfrequency (first mode) of the
blade, as illustrated in figure 2, and is the point where the least energy is needed to achieve
a given amplitude.[1] At the time of writing, Siemens use a feedback control loop, taking an
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Figure 1. General overview of the physical structure.
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Figure 2. Current system principle of operation with desired frequency ω∗ and natural
eigenfrequency ωn.

oscillation amplitude reference value and comparing it to the current amplitude. The error is
then used to alter the frequency at which the motor rotates. The U.S. National Renewable
Energy Laboratory uses a similar method, where hydraulic pistons are used instead of a motor
to provide a sinusoidal input moment [2]. An apparent issue with both these methods is that,
should the eigenfrequency be exceeded, the controller will see this as a positive error and increase
the motor frequency further, which decreases the gain and causes the test to fail as it can not
recover.

This paper examines a different approach where the actuator is assumed to have a variable
connection rod length, letting this control the excitation force when the motor is already running
at the eigenfrequency. If the exciter mass is moving at a circle with constant speed the centrifugal
force amplitude is F = m ·ω · r i.e. linear in r. The key idea in this paper is that using r as the
control input the system will be sufficiently close to linear to apply linear control system analysis
and design. Thus, the results of this paper will be a control system based on the actuation shown
in figures 3 and 4, and a controller designed to suit the requirements.

Section 2 describes the methods that are used to analyse and model the system, section 3
describes the controller design procedure and section 4 describes the method used to estimate the
amplitude of the non-linear model. In section 5, simulations with the designed control system
are presented. Finally, in section 6, different aspects of the content of the paper are discussed
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for alternative approaches etc.
Table 1 lists the basic variables and constants used in this paper, with a small description

and units. In this, and throughout this paper, vectors will be denoted with bars (e.g. z), ma-

Table 1. Common variables and constants in this paper
Variables

θ(t) Angle between blade tip and base [rad]

θ̇(t) Angular velocity [rad/s]

θ̈(t) Angular acceleration [rad/s2]
ϕ(t) Actuator angle to blade [rad]
ω Actuator angular velocity [rad/s]
r(t) Actuator connection rod length [m]
p(t) Actuator load mass point [m]
a Actuator mounting point [m]
F τ Actuator force [N ]

Constants

l Distance from blade base to actua-
tor mount, equal to |a|

[m]

m Actuator load mass [kg]
τm Actuator input moment [Nm]
Jw Blade mass inertia [Nm · s2]
Dw Non-linear drag coefficient [Nm · s2]
Dw,lin Linearised drag coefficient [Nm · s]
Ki Controller integrator coefficient [−]

trices with capital letters and double-bars (Z), time derivatives with dots (ż) and double time
derivatives with double-dots (z̈).

2. Modelling
To cope with the challenge of controlling the amplitude of the blade in a linear manner, the
procedure is:
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• Model the plant and identify the possible non-linearities.

• Simplify and linearise the model.

• Design a control system for the simplified and linearised system.

• Implement the controller in the non-simplified and non-linearised system.

This procedure will work as a guideline throughout this paper.
Figure 1 shows the interpretation of the system mechanics, i.e. a stiff beam with the

coefficients listed in table 1.
This interpretation results in equation (1) which is the mechanical moment equilibrium of

the blade.

Jw · θ̈(t) = τm −Dw · θ̇2(t) · sgn
(
θ̇(t)

)
−Kw · θ(t), (1)

It has been derived under the assumption that the damping coefficient Bw is negligible. Instead,
aerodynamic drag is included with the term Dw · θ̇2, due to the physical size of the blade. The
coefficient Dw depends on several factors, such as air density, the area facing the direction of
movement and the shape of the body.

The term Dw · θ̇2(t) · sgn
(
θ̇(t)

)
1 in equation (1) is found by analysis of the aerodynamics of

the blade in the relevant direction, although this will not be covered in this paper. Linearising
the term as a straight line between two bounds, found through simulations to be ±4 rad/s, and
inserting this into equation (1) yields:

Jw · θ̈(t) = τm −Dw,lin · θ̇(t)−Kw · θ(t), (2)

where Dw,lin is the approximation coefficient. This linearisation is illustrated in figure 5. [1]
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Figure 5. Linearisation of drag moment τd with linearisation bounds ±4 rad/s

With the linearised model of the blade in equation (2), the input τm is derived.
Considering the actuator at constant ω, the fictitious centrifugal force is acting upon the point
a, which creates a moment on the blade. However, since the actuator moves with the blade,
additional terms are expected, such as the fictitious Euler force. In order to properly analyse

1 The signum function: sgn(x) = x
|x| , x 6= 0 and sgn(0) = 0.
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the applied moment, the acceleration p̈(t) is described in terms of θ(t) and ϕ(t), with p(t) given
by equation (3):

p(t) = l ·
[

cos(θ(t))
sin(θ(t))

]
+ r(t) ·

[
cos(ϕ(t) + θ(t))
sin(ϕ(t) + θ(t))

]
(3)

The moment induced at the anchor point of the blade is defined as the cross product of the
excitation force F τ and the blade up to point a:

τm = a× F τ = a×
(
−m · p̈(t)

)
(4)

= l ·m · r(t) · sin(ω · t) · (ω + θ̇(t))2

− (l2 ·m+ l ·m · r(t) · cos(ω · t)) · θ̈(t) ,

Assuming that contributions from the angular velocity of the blade, θ̇(t), and the variation of
inertia due to the movement of the actuator mass, l · m · r(t) · cos(ω · t) · θ̈(t), are negligible,
equation (4) reduces to:

τm = Gi · r(t) · sin(ω t)− l2 ·m · θ̈(t), (5)

where Gi = l · m · ω2. Here, it is be seen that the last term of τm is a contribution to the
inertia, hence it can be added to Jw and omitted from τm. This observation results in the
following expression for the combined inertia: Jc = Jw + l2 · m, and the reduced moment,
τr = Gi · r(t) · sin(ω t). By inserting Jc and τr in equation (1), taking the Laplace transform
and arranging it according to the second order transfer function standard form, equation (6) is
obtained:

Gw(s) =
θ(s)

τr(s)
= Gk ·

ω2
n

s2 + 2 · ωn · ζ · s+ ω2
n

, (6)

where

ωn =

√
Kw

Jc
is the mechanical eigenfrequency,

ζ =
Dw,lin

2 ·
√
Jc ·Kw

is the damping ratio and

Gk =
1

Kw
is the system gain

In order to design a control system for the amplitude, the model must be simplified to output
this.

An underdamped dynamic system subject to a sine wave input will also output a sine wave,
with an amplitude gain and a phase shift dependent on the system characteristics. The imaginary
parts of the complex system poles describe these oscillations. The real parts, on the other hand,
describe the dynamics of the amplitude, as seen on figure 6.
It is thus possible to describe the oscillation amplitude by a first order system with a pole equal
to the aforementioned real parts of the complex poles and the system gain at the given frequency:

A(s)

τra(s)
=
∣∣Gw(jωn)

∣∣ ·G1.order(s), (7)

where
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A(s) :Amplitude of the blade oscillations [rad]

τra(s) :Amplitude of the sine input τr [Nm]∣∣Gw(jωn)
∣∣ :Gain ofGw at the eigenfrequency
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The real parts of the poles in equation (6) are −ζ ·ωn. As the amplitude input can be expressed
as τra(s) = Gi · r(s), by letting r(s) be the system input, equation (7) becomes:

Gamp =
A(s)

r(s)
= Gi ·

∣∣Gw(jωn)
∣∣ ·G1.order (8)

= l ·m · ωn2 ·
1

Kw
· 1

2 · ζ
· ζωn
s+ ζωn

=
l ·m · ωn3

2 ·Kw
· 1

s+ ζ · ωn
=

b

s+ c

This will be the basis for the controller design.

3. Controller Design
From equation (8), a controller is designed through pole-placement with respect to the
requirements. It is seen from equation (8) that the system is of type 0, thus an integrator
is needed to properly eliminate steady-state errors. From the approximation of the settling time
defined within ±2% of the steady-state value, Ts ≈ 4

c , the desired pole location c∗ is given by
[1]:

c∗ = − 4

Ts
(9)
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This can be achieved with the controller given by

C(s) =
Ki

s
, (10)

where Ki is the integration gain. The closed loop transfer function with this controller becomes

GCL(s) =
Ki · b

s2 + c · s+Ki · b
=
Ki · b
Q(s)

, (11)

where Q(s) is the characteristic equation of the closed loop system. Solving this for Ki and
inserting the desired pole location c∗ yields the required gain to place the closed loop poles such
that the response satisfies the requirement for Ts:

Ki =
−(c∗)2 − c · c∗

b
, (12)

where b and c are defined in equation (8). [1] The resulting control system is shown in figure 7.

Nonlinear
System

Plant
C(s)

Controller
Â ← A sin(ω t)
Sliding Window

Linear Regression

eh
1

Constant
Oscillationerror r

Amplitude
reference

Figure 7. Control system architecture

4. Ampltiude Estimation
In order to use the controller with the non-linear model, the amplitude of the oscillating output
is needed. In this paper, the output θ(t) is approximated as a sine wave by linear regression,
such that:

θ(t) ≈ A1 sin(ωt) +A2 cos(ωt) +D, (13)

where A is the amplitude, ω is the angular velocity, t is time and D is the error. As θ(t) is the
model output, and ω is predefined, taking N samples yields the set of equations:

θ1
θ2
...
θN

 ≈


sin(ω1 · t1) cos(ω1 · t1) 1
sin(ω2 · t2) cos(ω2 · t2) 1

...
...

...
sin(ωN · tN ) cos(ω · tN ) 1


A1

A2

D

 = M · x (14)

A solution to this system of equations is, by least squares [3]:

x =

(
M

T
· M

)−1

· M
T
· θ, (15)
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where θ is the vector of N samples of θ(t).

The estimate of the amplitude, Â, is then:

Â =
√
x21 + x22 =

√
A2

1 +A2
2 (16)

By limiting the number of samples and using the First In First Out principle, a sliding window
of N samples is used, allowing the estimation to follow variations in the amplitude.

5. Results
With the designed controller, C(s) = Ki

s , the closed-loop system step response is shown in figure
8 (yellow) along with some simpler controller alternatives, i.e. unit gain (blue) and a unit gain,
free integrator (red). css is the steady-state value, for which the settling time is defined as when
the transient response reaches ±2% of this value (dashed lines in figure 8). It is seen that the

0 200 400 600 800 1000 1200 1400
0

0.05

0.1

0.15
GCL(s), C(s) = 1
GCL(s), C(s) = 1

s

GCL(s), C(s) = Ki

s

900 s
css ' 2%

Time (seconds)

A
m

p
li
tu

d
e

Figure 8. System step response with different controllers and Gamp. The dash-dotted line
indicates the required settling time.

controller performs as intended with the simplified and linearised system, given the requirements
in table 3. For the non-linear, non-simplified system, a simulation with the parameters given in
table 2 yields a response as seen in figure 9.

Figure 9 shows the amplitude estimated by regression, Â, which matches the peaks of θ
adequately. Regarding the controller performance, figure 10 shows a comparison of a step input
of 0.1 rad for both the simplified system and the non-linear model. The deviation between the
two model variants is small for the same controller and reference. As such, it is possible to
conclude that the assumptions made in order to reduce equation (4) to equation (5) have had
only a minor effect on the usefulness of the controller.

6. Discussion
When controlling the amplitude of the blade, the distance from the motor to the actuator load
mass is limited by the length of the connection rod. This gives the risk of saturation, where
the actuator output cannot be larger. Therefore, larger driving moments can only be achieved
by moving the actuator mounting point (a), or alternatively increasing the maximum length of
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Table 2. Specific parameters for simulation in figures 9 and 10
Name Size Unit
r(t) ∈ [0, 1] [m]
Jw 45119 [kg ·m2]
Kw 5.946 · 106 [N ·m]
Dw 2.405 · 103 [kg ·m2]
Dw,lin 9.620 · 103 [kg ·m2 · s−1]
l 10 [m]
m 50 [kg]
plin ±4 38.48 · 103 [rad · s−1 , Nm]
Ki 0.0057 [−]
c 0.09597 [−]
b 0.05433 [−]

Table 3. System control requirements
Name Size Unit
Ts ∈ [600, 1200] [s]
ess 0 [%]
Mp 0 [%]
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Figure 9. Left: Simulation of non-linear model with controller and setpoint 0.1, as well as
estimated amplitude Â. Right: Close up look at the final five seconds.

the arm or manually increasing the actuator mass, but this takes up space and at some point
exceeds what is physically feasible. An alternative option is to control the mass instead (or
along with) of the distance to it, e.g. by using a pump supplying water to a ballast tank.

Regarding the estimation of the amplitude, the approach taken in this project, namely
regression by least squares, is only one example of how this can be achieved. Least squares
can be improved by solving the set of equation by total least squares or recursive least squares
regression instead, but since the estimation is not the primary goal of the project neither of these
has been implemented.[4] An alternative solution would be some methods of direct measurement
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Figure 10. Comparison of the simplified system and the non-linear model simulation, both
with identical control.

of the amplitude, as this would give an exact value instead of an estimation, though this is not
possible unless a physical system is available.

The results further show a working concept of a controller of the form C(s) = Ki
s , i.e. an

I-controller. It was found that this topology was enough to fulfil the requirements, and thus e.g.
a PI-controller was not needed. For another system, such as a larger blade, the controller design
and topology choice should be reconsidered, as the simple controller presented in this paper may
not be sufficient.

The simulations presented in this paper show that the control system designed for the
fatigue test is working as intended. Additionally, the robustness problem found in the existing
controller is solved by the developed one and actuation energy savings are possible from operating
constantly at the first blade frequency. In order to verify these conclusions, a test setup would
be necessary to support them with experimental data.
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