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Abstract. The article presents an approach to combine wake models of multiple levels of 

fidelity, which is capable of giving accurate predictions with only a small number of high 

fidelity samples. The G. C. Larsen and k-ε-fP based RANS models are adopted as ensemble 

members of low fidelity and high fidelity models, respectively. Both the univariate and 

multivariate based surrogate models are established by taking the local wind speed and wind 

direction as variables of the wind farm power efficiency function. Various multi-fidelity 

surrogate models are compared and different sampling schemes are discussed. The analysis 

shows that the multi-fidelity wake models could tremendously reduce the high fidelity model 

evaluations needed in building an accurate surrogate. 

1.  Introduction 

Due to the up-scaling of wind farms, wind turbine wake simulations become more challenging, and 

more and more high fidelity wake models are developed by different institutions. The design of wind 

farms and the calculation of annual energy production (AEP), taking uncertainty into account, always 

require a large number of wake model evaluations. Compared to the simple and fast engineering 

models, the wake simulations based on computational fluid dynamics (CFD) methods often give more 

information and yield better calculation results. High fidelity wake models are impractical for the 

calculation of the AEP and wind farm layout optimization due to the need of large computational 

resources. An efficient way to reduce the required computational resources for accurate AEP 

calculations, is to build a surrogate model of the high fidelity wake model. 

The concept of a surrogate model is to replace a complex wake simulation method by establishing 

the approximated model of the target function (wind farm efficiency or AEP), such that the number of 

high fidelity model evaluations needed to calculate the AEP is reduced. A large number of statistical 

methods can be used to build the surrogate model, such as Neural Network, Radial Basis Function, 

Kriging and Response Surface method [1, 2, 3]. For the efficient AEP calculation, the Polynomial 

Chaos technique [4] has been used to build the surrogate of a stationary wind farm flow model. Apart 

from the above fitting methods, the multi-fidelity method [5] has also gained a lot of attention. The 

multi-fidelity method combines accurate and often expensive models with models that are faster to run 

but also produce results of low accuracy. By taking a large amount of low fidelity model results and 

only a few high fidelity model results to increase the accuracy of the surrogate model, the multi-

fidelity method can significantly reduce the computational cost. 
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As for the AEP calculation, a large amount of model evaluations is needed to build an accurate 

surrogate. Thus, how to reduce the computational resources required by the surrogate model is still not 

clear. Based on the approach of Loic Le Gratiet [6], the presented article makes full use of the 

effectiveness of low fidelity wake models and the accuracy of high fidelity wake models, and proposes 

a framework for multi-fidelity wake modelling. The G.C. Larsen model [7] and a RANS model using 

the k-ε-fP turbulence model [8] are adopted as the low fidelity and the high fidelity ensemble members, 

respectively. Both wind speeds and wind directions are taken as input variables, and different 

sampling strategies are investigated to build the surrogate model. The objective of the present work is 

to demonstrate how a multi-fidelity surrogate wake model can be used to obtain more accurate and 

faster wind power and energy production calculations. The Lillgrund wind farm is used as a test case 

to analyze and validate the effectiveness of this multi-fidelity model. 

2.  Methodology 

This section describes the adopted methodologies, including the wake models used for aggregation, 

the Quantities of Interest that need to be surrogated, the Kriging and Co-Kriging interpolation 

techniques, and the sampling methods used for choosing the high fidelity samples. 

2.1.  The wake models for aggregation 

One of the key factors to obtain an accurate multi-fidelity surrogate model is to have a good low 

fidelity model which could give well predictions of high fidelity trends. Two different wake models 

developed at Technical University of Denmark (DTU) are respectively taken as the low fidelity (LF) 

and high fidelity (HF) model, which are the G. C. Larsen model and the k-ε-fP based RANS model. 

The principles and relative equations about the two models have been fully described by Gunner C. 

Larsen [7] and van der Laan et al. [8], and a brief overview about the two models is presented here.  

2.1.1.  G. C. Larsen model. The G. C. Larsen model (GCL) is a semi-analytical wake model used for 

the computation of stationary wind farm flow fields, and it is a very fast semi-empirical engineering 

model. GCL considers wakes as linear perturbations on the non-uniform ambient mean wind field, 

although the non-linear terms are included in the modelling of the individual stationary wake flow 

fields. The simulations of each individual wake contribution are based on an analytical solution of the 

thin shear layer approximation of the Navier-Stokes equations. The wake flow fields are assumed 

rotationally symmetric, and the rotor inflow fields are consistently assumed as uniform. The 

implementation of the GCL model used in this paper is accessible in the open source wind farm flow 

model library FUSED-Wake (https://github.com/DTUWindEnergy/FUSED-Wake), the power curve 

and coefficient curve used to calculate the total output power of the whole wind farm are publicly 

available from the wind turbine manufacturer.  

2.1.2.  k-ε-fP based RANS model. The RANS equations are solved by EllipSys3D [9, 10], the in-

house flow solver of DTU Wind Energy. The turbulence is modelled by the k-ε-fP model, a modified 

k-ε model [11], which is able to predict with more accuracy the near wake velocity deficit of actuator 

disks (AD) [12] situated in an atmospheric boundary layer. The ADs are loaded by thrust force 

distributions which are dynamically scaled by a thrust coefficient CT
*
 that is a function of the local AD 

velocity averaged over the AD, UAD [13]. For a given case, the CT
*
-UAD curve is obtained from a 

parametric run of single wind turbine simulations for free stream velocities of 4-25 m/s, where the 

standard thrust coefficient of the manufacturer is set. The rotational force is neglected because its 

effect on the power deficit is small [8]. The parametric run of single wind turbine simulations also 

provides a P-UAD curve that is used to post process the power of each AD in the wind farm simulations. 

Neutral (logarithmic) inflow conditions are set at the inlet and the bottom boundary is modelled as a 

rough wall. A turbulence intensity at hub height (TiH) of 4.8% is set by the roughness height 0z  and 

Hz [11].  
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Where k is the turbulent kinetic energy, UH is the stream wise velocity at the hub height velocity, κ

is the von Karman constant and μC  is the eddy-viscosity coefficient. 

2.2.  Quantities of Interest 

The normalized wind farm efficiency (NE) and the expected wind farm efficiency (EE) are taken as 

the Quantities of Interest (QoI). The NE is defined as the total output power normalized by the power 

of a single wind turbine without wake effects and the number of wind turbines. Since the performance 

of a wind farm is always evaluated by the expected energy production over years, and the annual 

energy production (AEP) is the most common evaluation index during the process of wind farm 

design and evaluation, the expected wind farm efficiency is also computed as a surrogate target. The 

EE represents a weighted contribution of the NE to the AEP, which is defined as the NE multiplied by 

the joint probability density distribution (PDF) of the corresponding averaged wind speed u and 

averaged wind direction θ.  
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Where ),u(P  is the total power output of the wind farm for a given wind speed and wind 

direction, )u(pc is the power output of a single wind turbine without wake effects for a given wind 

speed, wtN  is the number of wind turbines, ),u(PDF   is the joint PDF of wind speed and wind 

direction. 

2.3.  Interpolation and surrogate method 

Kriging and Co-Kriging based surrogate wake models are established in this paper. Based on the work 

of Sacks et al. [14], Kennedy and O’Hagan [15], Rasmussen C. E. [16] and Forrester et al. [5], a brief 

theoretical description of Kriging and Co-Kriging is provided here. The codes are implemented using 

the package scikit-learn as basis and based on the open-source OpenMDAO platform [17].  

2.3.1.  Kriging method. Kriging is a stochastic interpolation technique which assumes that the real 

model output is a realization of a Gaussian process, and could be expressed as follows: 

)x(z)x()x(y                                                            (5) 

Where )x( is the mean value of the Gaussian process and )x(z is a zero-mean Gaussian process 

with a fully stationary covariance function: 

)x,x(R)x,x(C   2
                                                      (6) 

Where 
2σ  is the variance, R is the correlation function which depends only on the absolute relative 

distance between each sample and   gathers the hyper parameters of R. There is a wide range of 

kernels that could be chosen as the correlation function R, such as squared exponential kernel, 

Gaussian kernel and Matérn kernel. For the universal Kriging case, the mean value is calculated as a 

combination of unknown linear regression coefficients j  and a set of preselected basis functions )x(f j . 

)x(f)x( j

m

j
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
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0

   (j=1, 2, …, m)                                          (7) 
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For a given case, a design of experiments is formed as X=[x1, x2, …, xn], and a corresponding set of 

model simulations are gathered as Y=[M(x1), M(x2), …, M(xn)]. Then based on the best linear 

unbiased prediction (BLUP), the Kriging predicted response at a new unknown point x

* Dx  is a 

Gaussian variable )x(Ŷ *
 with mean 

Ŷ
 and variance

2

Ŷ
 , which are defined as: 

)ˆFY(Rrˆf])x(M)x(Ŷ[E)x( TT)i(**

Ŷ
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Ŷ

11122                (9) 

where the optimal Kriging variance
2
Y and the generalized least square regression weights ̂  are 

given by: 

n
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And u, F, r are given by frRFu T  1
, )]x(f[F )i(

j and 
T

n21 ]r,...,r,[rr  , where 

)xx(Rr i*

i   (i=1, 2,…, n). 

2.3.2.  Co-Kriging method. Co-Kriging is an extension of Kriging, it has the same interpolation 

principle as Kriging, but with taking the results of low fidelity as the prior. If the high fidelity model is 

Me and the low fidelity model is Mc, and then the Co-Kriging model can be described as: 

  )ˆFY(RrT)c(

Ŷ

)e(

Ŷ
  1

                                              (12) 

Where   is a scaling factor that has a similar description as equation (11), 
)c(

Ŷ
 is the trend in the 

Kriging of the low fidelity data, and )ˆFY(RrT  1  depends only on high fidelity samples. 

2.4.  Sampling methods 

The surrogate model should not only be capable of fitting the sample data, but should also be able to 

predict the value of non-sample points in the design space. The sample size and scheme will have an 

impact on both the accuracy of the surrogate and the computational resources needed by the surrogate.  

A common principle for sampling methods is that the samples have to cover the whole design 

space and be able to represent the characters of the whole design. Based on that principle, three 

different sampling schemes, namely uniform sampling, extreme point sampling and random sampling, 

are used to determine the location of high fidelity samples. The uniform sampling is to sample 

uniformly in both the wind speed and wind direction dimensions. The extreme point sampling is 

conducted for every given wind speed, and the local extreme points of the low fidelity results are taken 

as the samples in wind direction dimension. The random sampling is conducted by using Latin 

Hypercube Sampling (LHS) method. LHS [18] is a statistical method for generating a sample of 

plausible collections of parameter values from a multi-dimensional distribution. The selected samples 

of LHS could be uniformly distributed in the whole design space. Assuming there are m design 

variables, and the sample size is n. The LHS method usually divides the variation range of every 

variable into n intervals, and the intervals would be equal if the design is even enough, and finally the 

design space will be divided into 
nm  sub-regions by LHS. One of the advantages of LHS appears 

when the output is dominated by only a few of the components of inputs. LHS ensures that each of 

those components is represented in a fully stratified manner, no matter which components might turn 

out to be important. 

3.  Case Analysis 
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The Lillgrund wind farm is used to assess the established surrogate models, a wide range of wind 

speeds and wind directions are considered as input wind conditions to carry on both univariate and 

multivariate wake modelling. 

3.1.  Wind farm description 

Lillgrund is an offshore wind farm, located at the southern coast of Sweden. It consists of 48 Siemens 

SWT93-2.3 MW wind turbines, and the layout as well as the power and thrust coefficient curves are 

show in Figure 1. The PDF of different wind conditions is taken as the function of both wind speed 

and wind direction. According to wind turbine power curve, the wind speeds that contribute to the 

AEP range from the cut in wind speed (4 m/s) to the cut out wind speed (25 m/s). The investigated 

wind direction covers the whole wind rose (from 0° to 360°, 0° represents north wind), which is 

uniformly divided into 12 sectors and the wind directions within each sector are assumed to have the 

same probability. The frequency of each wind direction sector and the Weibull distributions of wind 

speed within each sector could be obtained from the statistical data of the wind farm, and based on that, 

the PDF of every possible wind condition could be computed, which is shown in Figure 2.  

 

    
Figure 1.  Layout (left) and power and thrust coefficient curves (right) for wind turbines. 

 

 
Figure 2. PDF map for all wind speeds and wind directions. 

 

For Lillgrund wind farm, the GCL model and RANS model are taken as the low fidelity and high 

fidelity models, respectively. For a single flow case, the computation costs of GCL and RANS models 

are explained in Table 1. Since the value of thrust coefficient below the cut in wind speed is still 

unclear, both of the two wake models are evaluated from 5 m/s to 24 m/s (every 1 m/s) for the full 

wind rose. For each given wind speed, the low fidelity GCL model is evaluated every 1°, and the high 

fidelity RANS model is evaluated every 3°. Based on all those model evaluation results, the 

relationship between the input wind conditions and output efficiencies of each model can be built by 

using cubic spline function. Then, the interpolated results are assumed as the true model outputs. The 
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mean relative error (MRE) is calculated to evaluate the prediction performance of the surrogate 

Kriging and Co-Kriging models. 






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1i
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y

yy

N

1
MRE                                                     (13) 

Where N is the test points number, ypred is the predicted efficiency of surrogate model and y is the 

true efficiency value of every test sample. 

 

Table 1. The costs of GCL model and RANS model for a single flow case (Lillgrund case). 

 Low Fidelity High Fidelity 

Wake model GCL model k-ε-fP based RANS model 

Time 20 milliseconds 30 minutes 

CPU 1 core of 2.66GHz 140 cores of 2.8GHz 

 

3.2.  Univariate surrogate model 

3.2.1.  Surrogate with different variables. Both wind direction and wind speed are key components 

for AEP calculation. For univariate modelling, the wind farm efficiency is separately computed as the 

function of wind speed for a fixed wind direction and the function of wind direction for a fixed wind 

speed. The 9 m/s and 270° cases are separately taken as a fixed wind speed and wind direction because 

they have a high contributions to final AEP.   

Based on the wake model evaluations, the normalized wind farm efficiency curves for 9 m/s and 

270° can be obtained, and the expected wind farm efficiency can also be calculated. Figure 3 shows 

the comparison of different efficiency curves together with the PDF with respect to wind direction and 

wind speed separately. Figure 3 illustrates that the efficiency curves calculated by low fidelity GCL 

model and high fidelity RANS model have similar variation trends for both variables. The expected 

efficiency curve of 9 m/s shows discontinuities because of the discontinuous PDF curve of wind 

direction.  

 

   
a) For a fixed wind speed of 9 m/s.             b) For a fixed wind direction of 270°. 

Figure 3. The normalized and expected efficiency curves giving respect to different variables. 

 

The Kriging of high fidelity RANS model is established based only on RANS data. Figure 4 shows 

the error convergence curves for both the normalized efficiency and expected efficiency. For the study 

of sample size on each variable, a set of uniformly distributed 5 points covering the whole wind speed 

or wind direction range are selected as a start. To reduce the Kriging error, a new evaluation point 
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which gives the maximum predicted uncertainty will be added in the next run. As we can see from 

Figure 4, due to the discontinuity of PDF curve, more training points are needed for the expected 

efficiency to get the same accuracy as normalized efficiency. For the surrogate of normalized 

efficiency, it takes more than 50 training points to achieve an error of 10
-2

 for the wind direction 

variable, while only 7 points are needed when the wind speed is taken as the variable. This shows that 

the smoother the target function is, the fewer samples are needed by the Kriging method in order to get 

an accurate high fidelity surrogate. 

 

     
a) For a fixed wind speed of 9 m/s.                 b) For a fixed wind direction of 270°. 

Figure 4. Error curves of Kriging prediction for different variables giving respect to sample size. 

3.2.2.  Surrogate with wind direction. Since it is more difficult to get an accurate surrogate of wind 

farm efficiency as the function of wind direction, here three different sampling schemes are used to 

surrogate with wind direction for a fixed wind speed of 9 m/s. A wide range of uniformly spaced 

points, LHS based random points and extreme points are taken respectively as the high fidelity 

samples, 361 uniformly spaced points are taken as the low fidelity samples. Figure 5 shows the error 

convergence curves of the Kriging and Co-Kriging models with respect to the number of high fidelity 

wind direction samples. The surrogate object is the normalized wind farm efficiency.  

 

    
a) Kriging of RANS.                              b) Co-Kriging of GCL and RANS. 

Figure 5. Error convergence curves of different sampling methods. 

 

Figure 5 shows that, with the same number of high fidelity samples, the Co-Kriging model which 

takes low fidelity results as the prior information gives more accurate predictions than Kriging model 

which uses only high fidelity data. For these three sampling strategies, random and uniform sampling 

show almost the same performance, while the extreme points sampling gives a lower error for the 

Kriging model and a higher error for the Co-Kriging model. When 33 high fidelity samples are used, 

the three sampling schemes have a similar error, in the order of 10
-2

. 
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3.2.3.  Surrogate between neighboring wind speed. Based on the analysis of a large amount of low 

fidelity evaluations, the wind farm efficiency as a function of wind direction has similar variation 

trends between neighboring wind speeds. It means that the surrogate output of one wind speed could 

also be taken as a low fidelity prior input for the surrogate of neighboring wind speeds.  

The normalized wind farm efficiency increases with the increase of wind speed, but cannot be 

higher than one due to its definition. Since the stochastic Kriging cannot take that into consideration, a 

logistic function is needed to transfer the wind farm efficiency from the space of zero to one to the 

space of infinity, and then an inverse logistic function is used to transfer the Kriging prediction back to 

the real predicted efficiency. 

 

  
a) Taking extreme points as HF sample.    b) Taking random points as HF sample. 

Figure 6. Error of Co-Kriging predictions by taking the data of 9 m/s as a prior. Black points represent 

HF samples. 

 

The Co-Kriging surrogate of 9 m/s is taken as the initial prior, i.e. it is taken as the low fidelity 

model for the surrogate of 8 m/s and 10 m/s. Then all the wind speeds are divided into two groups, 

where one is higher than 9 m/s, and the other is lower than 9 m/s. As explained above, the surrogate 

results of 10 m/s and higher wind speeds are respectively taken as the prior low fidelity of their 

neighboring high wind speed, and the surrogate of 8 m/s and lower wind speeds are respectively taken 

as the prior of their neighboring low wind speed. 21 HF samples and 121 LF samples are used for the 

surrogate of every target wind speed. For HF samples, both the extreme and random sampling 

schemes are discussed. With the tuning of logistic and inverse logistic function, the error map of the 

whole prediction space can be obtained as shown in Figure 6. For either of the two sampling methods, 

the surrogate of low wind speed (5 m/s) gives high errors. In addition, it is also a little difficult to give 

very accurate predictions for the wind speeds (12-15 m/s) around rated wind speed. 

3.3.  Multivariate surrogate model 

The normalized wind farm efficiency is taken as the function of both wind speed and wind direction. 

Based on LHS method, some sets of random HF samples are selected to build the Kriging and Co-

Kriging surrogate models. Figure 7 shows the error convergence curves of the Kriging and Co-Kriging 

models with respect to the number of high fidelity samples. Figure 7 also presents the similar results as 

univariate surrogate, i.e. the Co-Kriging model can produce more accurate predictions than the 

Kriging model by using the same number of high fidelity samples. In order to illustrate the different 

predictions of different surrogate models, 300 random samples covering the whole design space are 

selected as the high fidelity sample to build the Kriging surrogate of the RANS results. In addition, 70 

random points which cover the whole design space are also selected as the high fidelity samples of 

Co-Kriging model, where 2420 uniformly spaced low fidelity samples are used as the prior 

information. The predicted errors of different surrogate models are shown in Figure 8. 
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Figure 7. Error convergence curves of different surrogate models 

 

 
a) Kriging of RANS                             b) Co-Kriging of RANS and GCL 

Figure 8. The error maps of different surrogate models. Black points represent HF samples. 

 

As illustrated in Figure 8, by taking a large number of low fidelity results as a prior in the Co-

Kriging method, it is much easier to capture the variation trends of the target function, compared to 

using only a small set of high fidelity model results in the Kriging method. In addition, the Co-Kriging 

method reduces the required number of high fidelity model evaluations. Thus, by using multi-fidelity 

wake modelling methods, the reduction of the computation resources would be very promising.   

4.  Discussion 

The advanced interpolation techniques, Kriging and Co-Kriging are adopted to build the surrogate of a 

high fidelity RANS model, and both the univariate and multivariate modelling techniques are explored. 

According to the case analysis and relevant results, the discussion and the potential future 

investigations could be given as follows.  

1) For univariate surrogate, it is much easier to build a surrogate model based on wind speed 

compared to wind direction, because the wind farm efficiency is a smoother function of wind speed 

than wind direction. The efficiency curves produced by the models of various fidelities take on similar 

variation trends, and a larger model difference can be seen for the wind directions in which more wind 

turbines are aligned. In order to have a clear conclusion about the wind conditions where extra high 

fidelity model evaluations are needed, the wind farms with different layouts should also be studied. 

2) For the univariate surrogate with wind direction, given the same high fidelity samples, the Co-

Kriging model can produce more accurate predictions than the Kriging model. When considering 

about the error convergence curves of different sampling methods, uniformly and randomly samplings 

have almost the same performance, especially when many samples are used. However, the extreme 

point sampling is different, and it could give valuable information needed by Kriging. Whereas the 

information needed by Co-Kriging is how to improve the low fidelity results in an overall way, which 

means using only the extreme points sampling may overcorrect the whole space and make high errors.  

The Science of Making Torque from Wind (TORQUE 2016) IOP Publishing
Journal of Physics: Conference Series 753 (2016) 032065 doi:10.1088/1742-6596/753/3/032065

9



 

 

 

 

 

 

3) In the shown test case, the wind direction sector is a bin of 30°, and the wind direction within 

each sector is assumed to have the same probability, which is too coarse for this analysis. The coarse 

wind direction bins also produce abruptly changing curves of expected efficiency, which made it 

difficult to obtain an accurate surrogate model. In future research, a continuous PDF of wind direction 

should be calculated based on the raw measurement data of test site. As a result, a more smooth 

expected efficiency function will be obtained, which can directly be used as the surrogate object. 

4) For the univariate surrogate between neighboring wind speed, the random sampling for different 

single wind speed performs better than using the same extreme points for every wind speed. Especially 

for the extension to multi-dimension space, it is better to have the samples which are able to cover the 

whole design space or at least all the meaningful space. If the surrogate is served for a specific 

application, such as AEP calculation, then a sample design could be made based on the distribution of 

input variables, i.e. give higher weights to more meaningful area so that to increase the efficiency and  

reduce the costs of the surrogate. 

5) For the surrogate with two-dimensional inputs, the wind farm efficiency is taken as the function 

of both wind speed and wind direction. To achieve an MRE of 1% for the whole validation area, 

Kriging needs 1200 HF samples, while Co-Kriging needs only 200 HF samples. Besides, the 

difference between high fidelity and low fidelity data could replace the high fidelity data and be the 

input of Co-Kriging model, which is another significant parameter that deserves more research. 

5.  Conclusions 

The G. C. Larsen model and k-ε-fP based RANS model are taken as low fidelity and high fidelity 

wake models, respectively. Based on Kriging and Co-Kriging method, both the univariate and 

multivariate modelling techniques are discussed, and the following conclusions can be drawn: 1) For 

univariate surrogate, the wind farm efficiency with respect to wind speed is easier to surrogate than 

with respect to wind direction, which means fewer samples are need to get an accurate surrogate for 

wind farm efficiency as function of wind speed than as function of wind direction. 2) The Co-Kriging 

model that uses data from models of multiple levels of fidelity produces better predictions than the 

Kriging model which takes only the high fidelity model as input. 3) Compared with other sampling 

schemes, the extreme points sampling produces a lower Kriging error, but a higher Co-Kriging error. 

A combination of different sampling methods could be considered in the future work. 4) Since the 

wind power efficiency curves for various wind speeds share similar variation trends, the surrogate 

model for a single wind speed could be taken as a low fidelity prior knowledge for the surrogate of 

neighboring wind speeds, using samples distributed over the whole space would help to produce a 

more accurate prediction. 5) The Co-Kriging with two-dimensional input has lower errors than 

Kriging, and could tremendously reduce the model evaluations needed by high fidelity wake model. 
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