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Abstract. A new algorithm for multi-objective wind farm layout optimization is presented. It 
formulates the wind turbine locations as continuous variables and is capable of optimizing the 
number of turbines and their locations in the wind farm simultaneously. Two objectives are 
considered. One is to maximize the total power production, which is calculated by considering 
the wake effects using the Jensen wake model combined with the local wind distribution. The 
other is to minimize the total electrical cable length. This length is assumed to be the total 
length of the minimal spanning tree that connects all turbines and is calculated by using Prim’s 
algorithm. Constraints on wind farm boundary and wind turbine proximity are also considered. 
An ideal test case shows the proposed algorithm largely outperforms a famous multi-objective 
genetic algorithm (NSGA-II). In the real test case based on the Horn Rev 1 wind farm, the 
algorithm also obtains useful Pareto frontiers and provides a wide range of Pareto optimal 
layouts with different numbers of turbines for a real-life wind farm developer.    

1. Introduction 
Among various tasks in designing a wind farm (WF), layout optimization is the one of crucial 
importance. This task aims to find the best solution of how many wind turbines (WTs) to install and 
where to install them, according to a single or multiple objective(s), and subjected to various 
constraints [1]. This problem is called wind farm layout optimization (WFLO) and has been studied by 
many researchers in the past two decades [2].  
     These studies can be divided into two types, depending on how the wind farm layout is modelled. 
One type discretizes the wind farm area into grids/cells and places turbines only at certain points of 
these grids/cells, thus can be called as discrete WFLO. This type of formulation was first proposed by 
Mosetti’s seminal work on WFLO [3], in which a square area of the size 2km by 2km was divided into 
10 by 10 grids with WTs placed only in the centers of these grids. By using this formulation, the 
proximity constraints between WTs and WF boundary constraints are automatically satisfied, and 
binary-coded genetic algorithm (GA) can be conveniently applied. Similar formulation has been used 
in many followed studies [4, 5]. 
    The other type models the locations of turbines as continuous variables and can be called as 
continuous WFLO. Many studies has adopted this formulation, such as Rivas’s study using simulated 
annealing (SA) [6], Ozturk’s study using a heuristic method [7] and Feng’s study using random search 
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(RS) [8]. While the discrete WFLO studies can optimize the wind farm layout and number of turbines 
at the same time, their continuous counterparts usually assume a fixed number of turbines.  
     Furthermore, the majority of these studies [3-8] formulate the problem as a single objective 
optimization problem, while the wind farm developers in real life usually face multiple objectives, 
which are often conflicting to each other. Recently several studies have addressed this issue using 
existing algorithms. Kwong et al. [9] used nondominated sorting genetic algorithm II (NSGA-II) [10] 
to maximize energy and minimize noise, and Chen et al. [11] applied multi-objective genetic 
algorithm (MOGA) to maximize the farm efficiency and minimize the cost per unit power. Both of 
these two studies assumed a fixed number of turbines. 
     In this study, we develop a new algorithm to optimize the wind farm layout and number of turbines 
simultaneously using the continuous WFLO formulation. It is developed based on our previous study 
on single-objective RS algorithm [8] and can be called as multi-objective random search (MORS). 
Both ideal case study using simple wind condition and real case study based on real wind condition 
are conducted. Problems with a fixed and unfixed number of WTs are both tested. It is also compared 
with NSGA-II in the ideal case study with a fixed number of WTs. 

2. Problem formulation 

2.1. General problem 
A general multi-objective WFLO problem can be formulated as:  

min  𝑓𝑓𝑚𝑚(𝑿𝑿,𝑁𝑁𝑤𝑤𝑤𝑤),           𝑚𝑚 = 1,2, … ,𝑀𝑀,
subject to: 𝑔𝑔𝑘𝑘(𝑿𝑿,𝑁𝑁𝑤𝑤𝑤𝑤) ≥ 0,    𝑘𝑘 = 1,2, … , 𝐾𝐾;

 ℎ𝑙𝑙(𝑿𝑿,𝑁𝑁𝑤𝑤𝑤𝑤) = 0,      𝑙𝑙 = 1,2, … , 𝐿𝐿;
𝑁𝑁𝑤𝑤𝑤𝑤

(𝐿𝐿) ≤ 𝑁𝑁𝑤𝑤𝑤𝑤 ≤ 𝑁𝑁𝑤𝑤𝑤𝑤
(𝑈𝑈);                       

𝑿𝑿(𝐿𝐿) ≤ 𝑿𝑿 ≤ 𝑿𝑿(𝑈𝑈).                             ⎭
⎪
⎬

⎪
⎫

 (1) 
 

where 𝑁𝑁𝑤𝑤𝑤𝑤 denotes the number of WTs, 𝑿𝑿 is a 𝑁𝑁𝑤𝑤𝑤𝑤 × 2 matrix defining their locations, 𝑓𝑓𝑚𝑚 is the mth 
objective function, 𝑔𝑔𝑘𝑘 is the kth inequality constraint function, ℎ𝑙𝑙 is the lth equality constraint function, 
𝑁𝑁𝑤𝑤𝑤𝑤

(𝐿𝐿) and 𝑁𝑁𝑤𝑤𝑤𝑤
(𝑈𝑈) are the lower and upper bounds of 𝑁𝑁𝑤𝑤𝑤𝑤, and 𝑿𝑿(𝐿𝐿) and 𝑿𝑿(𝑈𝑈) denote the lower and upper 

bounds for 𝑿𝑿.  
     Common objective functions for WFLO include annual energy production (AEP), cost of energy, 
profit, noise emission, and so on. Typical constraints that can be modelled as inequality constraint 
functions include wind farm boundary and wind turbine proximity, while equality constraints usually 
do not show in WFLO.  

Note that in its general form as described by Eq. (1), WFLO problem is a multi-objective, 
constrained, mixed-integer nonlinear optimization problem with an unfixed number of design 
variables. For modern large WFs, the number of WTs can be hundreds. Considering a large WF with 
𝑁𝑁𝑤𝑤𝑤𝑤

(𝐿𝐿) = 80 and 𝑁𝑁𝑤𝑤𝑤𝑤
(𝑈𝑈) = 100, the number of proximity constraints between any two WTs is 𝑁𝑁𝑤𝑤𝑤𝑤(𝑁𝑁𝑤𝑤𝑤𝑤 −

1)/2, and the number of boundary constraints for each WT is 𝑁𝑁𝑤𝑤𝑤𝑤. Thus the number of continuous 
design variables is between 160 and 200, while the number of inequality constraints, excluding other 
possible constraints, is between 3240 and 5050. For such a highly constrained high dimensional 
nonlinear optimization problem, it is usually impossible to find the global optimal solution(s) with 
classical analytical optimization techniques, thus most of the published works in WFLO apply 
heuristic optimization methods, such as GA [3,4], Monte Carlo [5], SA [6] and RS [8]. 

For multi-objective optimization problems, there are usually a group of solutions that can be found 
as the Pareto optimal solutions, which are also called as the Pareto frontier. A solution is called Pareto 
optimal, or non-dominated, if none of its objective functions can be further improved without 
degrading some of the other objective functions. If a solution satisfies all constraints and bounds, it is 
called as feasible solution, otherwise it is called as infeasible solution [12].  

In this study the constrained-dominance as defined in [10] is used to compare solutions. According 
to this definition: a feasible solution always dominates an infeasible solution; among two infeasible 
solutions, the one with smaller overall constraint violation dominates; among two feasible solutions, 
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the one that is better for at least one objective function and equal or better for all other objectives 
dominates.    

2.2. Wind farm modelling 
Modelling the power production accurately is essential in the context of WFLO, since the most 
important function of a WF is to generate power. This requires the appropriate modelling of wind, 
wake effects and power production.   
     The common practice models wind with sector-wise Weibull distributions and wind rose. In 
general the wind condition at a given height can be described by wind speed 𝑣𝑣 and wind direction 𝜃𝜃, 
and its distribution can be modelled by a probability density function (PDF) 𝑝𝑝𝑝𝑝𝑝𝑝(𝑣𝑣, 𝜃𝜃) . In our 
previous study [13], a joint distribution of wind speed and wind direction has been proposed, which 
can be used to obtain such kind of PDF based on real measurement data. In this study, we consider 
two kinds of wind cases. The first case is called ideal wind case which assumes a constant North wind 
at 8 m/s, while the second case is called real wind case which uses the proposed joint distribution 
obtained from the wind measurement in Horns Rev as shown in Figure 1. 

 

Figure 1. Joint distribution of wind speed and wind direction at Horns Rev [13] 
 
    Wake effect rises when an upwind turbine extracts energy from the wind and forms a wake that 
impacts the downwind turbine. It leads to reduced wind speed and increased turbulence and thus is 
crucial for WF modelling. Due to the nature of optimization problem, engineering wake models are 
commonly used in WFLO because of their low computational costs. In this study, as in most of the 
published WFLO studies, we use the Jensen wake model [14, 15]. 
    For a given inflow condition (𝑣𝑣, 𝜃𝜃), we can first calculate the wake effects between WTs and then 
get the wind speed at each WT 𝑣̅𝑣𝑖𝑖, then the power generated by each WT can be calculated based on 
the manufacturer provided power curve 𝑃𝑃 = 𝑃𝑃(𝑣𝑣). Combined with the PDF of wind, we can write the 
expected total power produced by the WF as 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = ��𝑃𝑃(𝑣̅𝑣𝑖𝑖) × 𝑝𝑝𝑝𝑝𝑝𝑝(𝑣𝑣
𝑁𝑁𝑤𝑤𝑤𝑤

𝑖𝑖=1

, 𝜃𝜃)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
(2) 

 

    The detailed procedure for calculating power production can be found in [8]. 

2.3. Objective functions 
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Two objectives are considered in this study, which include maximizing the expected total power (𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡), 
and minimizing the total electrical cable length (𝐶𝐶𝐶𝐶). The total electrical cable length of a given WF is 
defined as the total length of the minimal spanning tree that connects all WTs. It can be easily 
calculated by Prim’s algorithm [16], which is a widely used greedy algorithm to find a minimal 
spanning tree for a weighted undirected graph. Thus, we can write the objective functions as follows: 

 𝑓𝑓1(𝑿𝑿,𝑁𝑁𝑤𝑤𝑤𝑤) = −𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑿𝑿,𝑁𝑁𝑤𝑤𝑤𝑤),    
 𝑓𝑓2(𝑿𝑿,𝑁𝑁𝑤𝑤𝑤𝑤) = 𝐶𝐶𝐶𝐶(𝑿𝑿,𝑁𝑁𝑤𝑤𝑤𝑤).         � 

(3) 
 

    Note that maximizing 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 has been changed into minimizing −𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡, in order to make the WFLO 
problem suitable for being solved by some existing algorithms, such as NSGA-II.  

2.4. Constraint functions 
Two kinds of constraints are considered in this study. The first kind is the boundary constraint. It 
requires that all the WTs are inside the WF boundary, which can be denoted as the feasible area 
𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . This area can be usually modelled as a simple polygon, i.e., a polygon with no self-
intersecting edges, and specified by a series of coordinates of its vertices. Assuming the coordinates of 
the ith WT are (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), we can write the boundary constraints for each WT as the first 𝑁𝑁𝑤𝑤𝑤𝑤 inequality 
constraints with:  

𝑔𝑔𝑘𝑘 = �
0, if (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) ∈ 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,
−∞, if (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) ∉ 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, for 𝑖𝑖 = 1, 2, … , 𝑁𝑁𝑤𝑤𝑤𝑤 with 𝑘𝑘 = 𝑖𝑖.  (4) 

 
    Note that in the above boundary constraints, any WT that is outside of 𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 will lead to its 
corresponding constraint violation being infinitely large, meaning that we are totally intolerant to 
layouts that violate the boundary constraints. 

The second kind of constraints are the WT proximity constraints, which require the distance 
between any two WTs is greater than or equal to a given minimal distance requirement 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚. Since 
there are 𝑁𝑁𝑤𝑤𝑤𝑤(𝑁𝑁𝑤𝑤𝑤𝑤 − 1)/2 pairs of WTs, we can write the proximity constraints as the left 𝑁𝑁𝑤𝑤𝑤𝑤(𝑁𝑁𝑤𝑤𝑤𝑤 −
1)/2 inequality constraints (following the 𝑁𝑁𝑤𝑤𝑤𝑤 boundary constraints) with: 

𝑔𝑔𝑘𝑘 = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2 − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚,
for 𝑖𝑖 = 1, … ,𝑁𝑁𝑤𝑤𝑤𝑤 − 1 with 𝑗𝑗 = 𝑖𝑖 + 1, … ,𝑁𝑁𝑤𝑤𝑤𝑤
and 𝑘𝑘 =  𝑁𝑁𝑤𝑤𝑤𝑤 + 1, … ,𝑁𝑁𝑤𝑤𝑤𝑤(𝑁𝑁𝑤𝑤𝑤𝑤 + 1)/2.            

(5) 
 

    With the above definitions, we could easily verify whether a given inequality constraint 𝑔𝑔𝑘𝑘 ≥ 0 is 
satisfied. If it is not satisfied, the value −𝑔𝑔𝑘𝑘 will give the degree of the constraint violation.       

3. Optimization algorithms 
In our previous studies, the RS algorithm has been developed for single-objective WFLO and applied 
in both offshore WFs [8, 13] and WFs in complex terrain [17]. In this section, we first present MORS 
that is extended from the single-objective RS and then give a brief introduction to NSGA-II, which we 
will compare with in the case studies.  

3.1. MORS 
Unlike the population based search methods, such as the widely used GA [10], MORS is a single 
solution search method. At each step, a new feasible solution is generated by adding, or removing, or 
moving one turbine randomly to the previous solution. This new solution is then compared with the 
current Pareto optimal solutions for non-dominance check, and the Pareto optimal solution set is then 
updated accordingly. This step is iteratively repeated until some stop conditions are met. The 
procedure of this algorithm is shown in the following pseudo code: 

 

Algorithm 1: Pseudo code of MORS for WFLO 
 

Initialization: 
Select an initial feasible solution 𝑺𝑺0 and evaluate its objective functions; 
Set current solution 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑺𝑺0, set initial Pareto Optimal Set (POS) = {𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛}. 

 

While stop conditions are not true: 
1. Generate a new feasible solution 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 by taking one of the 3 actions to 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛: 

(a) Add a WT at a feasible random position (with probability 𝑝𝑝𝑎𝑎); 
(b) Remove a randomly chosen WT (with probability 𝑝𝑝𝑟𝑟); 
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(c) Move a randomly chosen WT to a random position (with probability 𝑝𝑝𝑚𝑚). 
 

2. Evaluate objective functions of the current new solution 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛. 
 

3. Make non-dominance check & POS update: 
Compare 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 with all solutions in POS in the objective space: 
If 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 is dominated by one of the solutions in POS: 

        Continue; 
Elseif 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 dominates one or several of the solutions in POS: 

     Remove the solution(s) dominated by 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 from POS, 
     Add 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 to POS, set 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛; 

Else: 
     Add 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 to POS, set 𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑺𝑺𝑛𝑛𝑛𝑛𝑛𝑛. 

End if 
End While  
 

POS gives the set of Pareto optimal solutions. 
 
    We should note that in Step 1 of Algorithm 1, i.e., generating a new feasible solution based on the 
current solution, we always make sure the new solution satisfies all the constraints and bound 
requirements. This is easily done by checking the relevant WT’s position with the WF boundary and 
its distances with all other WTs. This relevant WT is the new WT in action (a) and the chosen WT in 
action (b). Also the bounds on the number of WTs are checked when adding/removing a WT. When 
using MORS, we can set the stop condition as when the total number of evaluations reaches a given 
number 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 . Thus, this algorithm has only three parameters to set: 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 ,  𝑝𝑝𝑎𝑎  and 𝑝𝑝𝑟𝑟  (note that 
𝑝𝑝𝑚𝑚 = 1 − 𝑝𝑝𝑎𝑎 − 𝑝𝑝𝑟𝑟) and is simple, intuitive and easy to implement. 

3.2. NSGA-II 
NSGA-II is a famous multi-objective genetic algorithm developed by Deb et al. in 2002 [10]. It is a 
fast nondominated sorting based approach with 𝑂𝑂(𝑀𝑀𝑁𝑁2) computational complexity (where 𝑀𝑀 is the 
number of objective functions and 𝑁𝑁 is the population size). Like all GAs, it maintains a population of 
solutions and evolves it by a certain number of generations.  

In each generation, an offspring population of the same size 𝑁𝑁  is produced from the parent 
population by using the usual binary tournament selection, crossover, and mutation operators. Then 
the combined population (parent and offspring populations) is sorted according to each solution’s 
nondomination level. This level is evaluated based on the objective functions and constraint violations, 
according to the definition of constrained-dominance as introduced before (in section 2.1). Among the 
solutions with the same nondomination level, a metric of crowding distance is used to sort them, 
which can preserve diversity of solutions in the objective space. Then the best 𝑁𝑁 solutions in this 
combined population are selected to be the parent population for the next generation. For detailed 
procedure, one can refer to the original paper [10]. 

This algorithm has gained popularity since its birth and been applied to tackle various engineering 
optimization problems, such as water distributing network design [18], hydro-thermal power 
scheduling [19], capacitor placement in distribution circuits [20] and WFLO [9]. 

4. Ideal test case 
We choose the widely studied Horns Rev 1 offshore WF to test the proposed algorithm. This WF is 
located in Denmark and has a rated capacity of 160 MW, composed of 80 Vestas V80 2MW WTs. The 
detailed layout and the characteristics of WT can be found in [8]. In the test case, the WF boundary as 
shown in the original Horns Rev 1 WF is considered and the minimal distance requirement between 
any two WTs is set as 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 480 𝑚𝑚, i.e., 6 times of the rotor diameter. We consider WFLO defined 
in Eqs. (1-5) under the ideal wind case (constant North wind at 8 m/s) as the ideal test case.  

4.1. WF with a fixed number (80) of WTs  
Since the real value coded NSGA-II doesn’t have the ability to count the variable number of design 
variables, we first construct a WFLO problem with a fixed number of WTs, i.e., 𝑁𝑁𝑤𝑤𝑤𝑤

(𝐿𝐿) = 𝑁𝑁𝑤𝑤𝑤𝑤
(𝑈𝑈) = 80.  
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The NSGA-II code we use in this study is based on the matlab code written by Seshadri [21]. In this 
code, simulated binary crossover (SBX) and Polynomial mutation are implemented. The original code 
considers only unconstrained optimization problem, and we have extended it to solve constrained 
problem. In the initial experiments, we found that NSGA-II fails to find feasible solutions when 
starting from random solutions, even with a large population size and a lot of generations. This is due 
to the highly constrained nature of the WFLO problem. Therefore, we decide to feed in half of the 
initial population with feasible solutions. Those solutions are layouts obtained by applying multiple 
times of random move actions to the original WF layout. In each random move action, a randomly 
chosen WT is moved to a random position that satisfies all the constraints and bounds. The parameters 
for NSGA-II are shown in Table 1.  

Table 1. Parameters for NSGA-II 
 

Parameter Value Note 
Crossover probability 0.9  
Mutation probability 1/N (N is the number of design variables) 
Distribution index for crossover operator 20  
Distribution index for mutation operator 20  
Population size 100 or 320  
Generation 500  
 

    The final pareto solutions found by NSGA-II after 500 generation with small (100) and large (320) 
population sizes are shown in Figure 2.  The feeded initial solutions including the original solution, i.e., 
the original Horns Rev 1 WF’s layout, are also shown. Note also that in Figures 2 and 3, the horizontal 
dash line marks the upper bound for 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡  (the ideal total power with no wake effect, 55.20 𝑀𝑀𝑀𝑀), 
while the vertical dash line marks the lower bound for  𝐶𝐶𝐶𝐶  (the minimal total cable length, i.e., 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 × (𝑁𝑁𝑤𝑤𝑤𝑤 − 1) = 37920 𝑚𝑚). 

  
                                             (a)                                                                             (b) 

Figure 2. NSGA-II results for ideal test case: 500 generations with population size: (a) 100, (b) 320  
 
    Note that among solutions of the population in the last generation, only the feasible solutions that 
are ranked at 1st level by non-dominance are shown, since these are the final Pareto optimal solutions 
found by NSGA-II. And the numbers of solutions are 94 and 128 for the results shown in Figure 2 (a) 
and (b) respectively. 
    To compare with NSGA-II, we solve the same problem with MORS, with parameters 𝑝𝑝𝑎𝑎 = 0.0, 
𝑝𝑝𝑟𝑟 = 0.0, 𝑝𝑝𝑚𝑚 = 1.0 and the maximal number of evaluations as 10000 and 160000. The results are 
presented in Figure 3, where the middle solutions, i.e., all the solutions that have once been included in 
the Pareto optimal set, are also included to show the evolving tracks of MORS.  
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                                             (a)                                                                             (b) 

Figure 3. MORS results for ideal test case with 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 set as: (a) 10000, (b) 160000 
 
    To better visualize the difference between the results found by MORS and NSGA-II, we present the 
four sets of Pareto optimal solutions in the figure below.  

 

Figure 4. Comparison between different results obtained by MORS and NSGA-II (the number in 
brackets shows how many solutions are found in the final Pareto frontier) 

 
We could clearly see that while both methods obtained better solutions than the original solution, 

MORS outperforms NSGA-II quite significantly. Even MORS with only 10000 evaluations manages 
to find much better Pareto optimal solutions than NSGA-II with 160000 evaluations. When increasing 
the maximal evaluations to 160000, MORS succeeds in finding Pareto frontier that approaching the 
lower bound of one of the objectives: 𝐶𝐶𝐶𝐶. It’s also worthy to note that the upper bound for 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 is 
impossible to approach, since wake effects are quite profound for WT under wind speed around 8 m/s 
and there is no way to fully avoid wake effects for a WF with 80 WTs staggered in such a limited area. 
Thus, we might conclude that the Pareto frontier found by MORS with 160000 evaluations is actually 
approaching and gets quite close to the true Pareto frontier of this WFLO problem. The other thing we 
can note is that the number of final Pareto optimal solutions found by MORS and NSGA-II are in the 
same order and also spread out in a similar range in the objective space.   

From the above comparison, we find that MORS works better than NSGA-II for high dimensional, 
highly constrained nonlinear optimization problems such as WFLO and it can find much better 
solutions for multi-objective WFLO. Also, MORS has the additional capacity of optimizing layout and 
number of WTs simutaneously. Therefore, we choose to use MORS only in the test cases below.  
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4.2. WF with an unfixed number (65-75) of WTs 
To test the ability of dealing with an unfixed number of WTs, we consider the same problem but with 
𝑁𝑁𝑤𝑤𝑤𝑤

(𝐿𝐿) = 65 and 𝑁𝑁𝑤𝑤𝑤𝑤
(𝑈𝑈) = 75, and set the initial solution as the original WF’s layout with the first 70 

WTs. The result obtained by MORS with 𝑝𝑝𝑎𝑎 = 0.1, 𝑝𝑝𝑟𝑟 = 0.1, 𝑝𝑝𝑚𝑚 = 0.8 and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 20000 is shown 
in Figure 5. Note that the dash lines in Figure 5 (a) mark the upper bound of total power and the lower 
bound of cable length. 

 
                                             (a)                                                                             (b) 

Figure 5. MORS result for ideal test case with an unfixed number of WTs: (a) evolving track and final 
solutions; (b) classification of solutions according to the number of WTs (number of solutions shown 

in the brackets) 
 
   We can see that MORS is capable of finding a quite diverse Pareto frontier, which is composed of 
solutions with different numbers of WTs. Also for a given number of WTs, it manages to find a range 
of different layouts that are Pareto optimal with regards to the two objectives, i.e., power and cable 
length, thus provides a range of optimal options for WF developers with different preferences on the 
trade-off between the two objectives. 

5. Real test case 
Wind conditions in real WF sites are much more complicated than the ideal wind case. To test the 
algorithm in a realistic scenario, we consider the real wind case in Horn Rev in our real test cases. This 
wind case can be modelled by the two dimensional distribution as shown in Figure 1. The WFLO 
problem defined in Eqs. (1-5) and under the real wind conditions is hereby called the real test case. 

5.1. WF with a fixed number (80) of WTs 
Considering the real test case with a fixed number of WTs, i.e., 𝑁𝑁𝑤𝑤𝑤𝑤

(𝐿𝐿) = 𝑁𝑁𝑤𝑤𝑤𝑤
(𝑈𝑈) = 80, we run MORS 

with parameters 𝑝𝑝𝑎𝑎 = 0.0, 𝑝𝑝𝑟𝑟 = 0.0, 𝑝𝑝𝑚𝑚 = 1.0 and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 20000. The result we have obtained is 
shown in Figure 6. 
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                                             (a)                                                                             (b) 

  
                                             (c)                                                                             (d) 

Figure 6. MORS result for the real test case: (a) evolving track and final solutions; (b) original layout; 
(c) optimal layout with maximal 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡; (d) optimal layout with minimal 𝐶𝐶𝐶𝐶 

 
    Note that in the final Pareto optimal solutions, MORS manages to reduce the cable length largely, 
but the achieved maximal improvement on 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡  is quite small. This reveals that among the two 
objectives of this given WFLO, cable length is easy to reduce while power is very hard to increase. 
This phenomenon is in line with our previous studies on the Horns Rev 1 WF [8, 13], in which we 
aimed to maximize 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 using single-objective RS and achieved just a very small increase.  

As found in [13], it matters for WFLO how many wind direction sectors are used in power 
calculation. Using few sectors (12 as in the common practice) will lead to impressively high but unreal 
improvement on power, while using a sufficiently large number of sectors (such as 360) can give 
seemly low but real and solid improvement. Thus, in this study, we have used 𝑑𝑑𝑑𝑑 = 1 𝑚𝑚/𝑠𝑠  and 
𝑑𝑑𝑑𝑑 = 1 𝑑𝑑𝑑𝑑𝑑𝑑 when calculating 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 by the integral defined in Eq. (2). 

If we compare the layout optimized by MORS shown in Figure 6 (c) with the original layout shown 
in Figure 6 (b), we could see that the optimized layout is clearly better than the original one, as it 
requires a much shorter (more than 11%) cable length while maintaining the same level and even 
slightly higher power production.  

5.2. WF with an unfixed number (65-75) of WTs 
Consider the real test case with 𝑁𝑁𝑤𝑤𝑤𝑤

(𝐿𝐿) = 65 and 𝑁𝑁𝑤𝑤𝑤𝑤
(𝑈𝑈) = 75, and set the initial solution as the original 

WF’s layout with the first 70 WTs. The result obtained by MORS with 𝑝𝑝𝑎𝑎 = 0.1, 𝑝𝑝𝑟𝑟 = 0.1, 𝑝𝑝𝑚𝑚 = 0.8 
and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 20000 is shown in Figure 7. 
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                                             (a)                                                                             (b) 

Figure 7. MORS result for the real test case with an unfixed number of WTs: (a) evolving track and 
final Pareto solutions; (b) classification of solutions according to the number of WTs (number of 

solutions shown in the brackets) 
 
   Similar with the performance for the ideal test case, MORS also finds a widely spreaded Pareto 
frontier in the real test case, which can be clearly divdided into 11 segment-like groups. Each of these 
groups acutally includes several Pareto optimal solutions with a certain number of WTs, 
cooresponding to one of the 11 possible values for the number of WTs  (65 ≤ 𝑁𝑁𝑤𝑤𝑤𝑤 ≤ 75). The result 
found by MORS can be quite useful in decision-making for WF developers, since it obtains a wide 
range of possible good layouts, each has a different number of WTs and a different position on the 
trade-off map between the two objectives: maximizing power and  minimizing cable length. 

6. Conclusions 
We present a new algorithm called MORS in this paper, which can optimize the layout and the number 
of WTs simultaneously for multi-objective WFLO. As a general algorithm, it can consider multiple 
objectives (more than 2) and naturally deal with different constraints. In the meanwhile, it is a simple 
algorithm that requires only a few of parameters and it is also easy to implement and run. Without loss 
of generality, we consider two objectives (maximizing power and minimizing cable length) and two 
kinds of constraints (WF boundary and WT proximity). 

After comparison with a mature and popular multi-objective evolutionary algorithm NSGA-II, it is 
found that MORS outperforms NSGA-II largely in the ideal test case. Furthermore, it has the 
additional advantage of dealing with an unfixed number of WTs. In the real test case on the Horn Rev 
1 WF, MORS also shows promising performance. For the problem with a fixed number of WTs, it 
manages to get layout that has a much shorter cable length and a slightly higher power production. For 
the problem with an unfixed number of WTs, it obtains a wide range of Pareto optimal layouts with 
different numbers of WTs. 

MORS can be a quite useful tool for WF developers. It will be further improved and tested in our 
future studies, which might include considering more realistic objectives (more than 2), considering 
other kinds of constraints such as terrain ruggedness, forbidden zones, noise emission and so on, and 
adding parallelism in the algorithm to harness the power of high fidelity models and high performance 
computing.  
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