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Abstract. Projective measurement can increase the entropy of a state ρ, the increased entropy
is not only up to the basis of projective measurement, but also has something to do with the
properties of the state itself. In this paper we define this increased entropy as basis entropy.
And then we discuss the usefulness of this new concept by showing its application in deciding
whether a state is pure or not and detecting the existence of quantum discord. And as shown in
the paper, this new concept can also be used to describe decoherence.

1. Introduction
Projective measurement can increase the entropy of a state ρ[1][3]. And for different states, the
increased entropy is different, and it is up to two factors

(i) The orthogonal projectors of projective measurement
(ii) The state itself.

Every state has its increased entropy after a projective measurement. This increased entropy is
actually a quite useful physical quantity. The aim of this paper is to show the usefulness of this
increased entropy by providing some theorems about this increased entropy. A mentionable
merit of this increased entropy is that it is highly related to quantum discord, and it can be
used to detect the existence of quantum discord.

2. Basis entropy
First we should give this increased entropy a proper name. Since projective measurement is
dependent on its basis, we suggest using ’basis entropy’ to describe this increased entropy of
the state. The meaning of which is, with the knowledge of the state(the knowledge here means
the information which equals to the von Neumann entropy of this state), the ignorance of a
state’s projective measurement result. And according to the definition of basis entropy, we can
use the following formula to calculate basis entropy

BE = S(∑
i

PiρPi)− S(ρ) (1)

where Pi is a complete set of orthogonal projectors.
A good example which can illustrate the physical meaning of basis entropy is Grove’s

algorithm[4]. First let us review the procedure of Grover’s algorithm[1].
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(i) |0〉⊗n|1〉
(ii) −→ 1√

2n ∑2n−1
x=0 |x〉[

|0〉−|1〉√
2

]

(iii) −→ [(2|ψ〉〈ψ| − I)O]R 1√
2n ∑2n−1

x=0 |x〉[
|0〉−|1〉√

2
]

≈ |x0〉[ |0〉−|1〉√
2

]

(iv) −→ x0

The first state is the initial state, where n represents the qubit number, by applying H⊗n to initial
n qubits we get the state in step two, and then we apply the Grover iteration (2|ψ〉〈ψ| − I)O[6],
we get the state in step three. After applying the Grover iteration for about R ≈ dπ

√
2n/4e

times, we get the wanted state |x0〉, the detail of Grover’s algorithm refer [1].
For Grover’s algorithm, we actually search in the state (∑2n−1

i=0 |xi〉)/
√

2n, and measure it
with projectors {|0〉〈0|, |1〉〈1|}, before apply Grover iteration, the basis entropy of the database
state is n, this is our ignorance of the measurement result, which means without applying
Grover iteration, we need n bits to describe the measurement result. After apply one time of
Grover iteration, the basis entropy decreased, which means our ignorance of the measurement
result decreased, so the probability of finding the target state |x0〉 increased. As shown in
Figure 1, with the decreasing of the basis entropy, the successful probability is increasing.

Figure 1 is the basis entropy change of Grover’s algorithm, here we set n = 20, clearly we
can see from this figure that, the more time we apply Grover iteration(under the desired time
R ≈ dπ

√
2n/4e, see appendix A), the basis entropy will be smaller and the success probability

will be higher.
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Figure 1: Basis entropy and success probability change of Grover’s algorithm

Another example is Shor’s algorithm. The procedure of Shor’s algorithm is shown as follows
[1]:

(i) |0〉|1〉

(ii) −→ 1√
2t ∑2t−1

j=0 |j〉|1〉

initial state

create superposition
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(iii) −→ 1√
2t ∑2t−1

j=0 |j〉|xjmodN〉
≈ 1

r2t ∑r−1
s=0 ∑2t−1

j=0 e2πisj/r|j〉|us〉

(iv) −→ 1√
r ∑r−1

s=0 |s̃/r〉|us〉

(v) −→ s̃/r

(vi) −→ r

apply Ux,N

apply inverse Fourier transform to first regis-
ter

measure first register

apply continued fractions algorithm

where Ux,N performs the transformation |j〉|k〉 −→ |j〉|xjk modN〉. r is the least integer such
that xr = 1(modN), Figure 2 is the quantum circuit of Shor’s algorithm.

H⊗t |j〉
FT† Measure

xj mod N

|0〉

|1〉

Register 1
t qubits

Register 2
L qubits

Figure 2: Quantum circuit of Shor’s algorithm

where t is the qubit number of |0〉, and L is the qubit number of |1〉. For more details of
Shor’s algorithm, refer [1]. Next, we will analyse the basis entropy of Shor’s algorithm.

In Shor’s algorithm, we use state (∑2t−1
j=0 |j〉|1〉)/

√
2t to factor great numbers, but we get the

useful measurement result from the first register, so we only calculate the basis entropy of
the first register. The measurement projectors of Shor’s algorithm are {|0〉〈0|, |1〉〈1|}. Before
we apply Shor’s algorithm, the basis entropy of the first register is t, and then after the Ux,N
transformation, the basis entropy remains unchanged, and after the inverse Fourier transform,
the basis entropy becomes r, then the main part of Shor’s algorithm is over, the subsequent
steps are measuring the state and applying mathematical methods to the measurement result.

From the change of the basis entropy we can easily see that the most crucial step of Shor’s
algorithm is applying inverse Fourier transform, because this step reduced the basis entropy
of the first register without decohering it. After this crucial step, the basis entropy of the first
register reduced from t to r, and then we have a higher probability to get the desired state by
measuring the first register.

From the two examples above we can see that basis entropy is the ignorance of the
measurement result with the knowledge of the state.

3. Maximum and minimum basis entropy
A state’s basis entropy is dependent on different measurement projectors, so the number of
its basis entropy is actually infinite, but we are only interested in its maximum and minimum
basis entropy.

3.1. The property of maximum basis entropy
For a state’s maximum basis entropy, we have the following theorem.
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Theorem 1. Iff a state’s maximal basis entropy is log2D, the state is a pure state.

where D is the dimension of Hilbert space.
Proof: If a state’s maximal basis entropy is log2D, which means

BEmax = S(∑
i

PiρPi)− S(ρ) = log2D (2)

Since the entropy of a state is non-negative and in a D-dimensional Hilbert space, the state’s
von Neumann entropy is at most log2D[1], so if the basis entropy of a state is log2D, then S(ρ)
must be zero, which means the state is a pure state.
Let’s prove the other direction of the theorem. It seems only for pure state like

|ψ〉 = 1√
D

D

∑
i
|i〉 (3)

has log2D basis entropy, while for pure state like (
√

3|0〉+ |1〉)/2, its basis entropy is smaller
than log2D. We will prove that for any pure state, its maximum basis entropy will be log2D,
as long as we choose right projectors to measure them. For simplicity, we just prove the case
D = 2. For any pure state, we can write its density matrix as

ρ =
1
2

I + aσ1 + bσ2 + cσ3 (4)

where a, b and c are coefficients and σ1, σ2, σ3 are Pauli matrices. We only need to prove that

Smax(
D

∑
i

PiρPi) = 1 (5)

where,
{Pk = V|k〉〈k|V† : k = 0, 1} (6)

is the complete set of orthogonal projectors. And V is a 2-dimensional unitary transformation.
It has be proven that for any 2-dimensional pure state, its maximum basis entropy is log22 = 1
(for those who are interested in the details ,see appendix B). And now we complete the proof
of theorem 1. The proof can be easily extended to higher Hilbert space.

From theorem 1, it is natural to get the following corollary:

Corollary 1. Only for states like ρ = ∑D
i |i〉〈i|/D, they have no basis entropy, it means

no projective measurement can increase their entropy.

This corollary is easy to prove, since for a state like ρ = ∑D
i |i〉〈i|/D, its von Neumann has

reached the maximal value in its Hilbert space, so no projective measurement can increase its
entropy.

We can use maximum basis entropy to judge whether a state is mixed or not. According
to theorem 1, if a state’s maximum basis entropy is log2D, then the state is a pure state. If its
maximum basis entropy is smaller than log2D, then it’s a mixed state. If its maximum basis
entropy is zero, it has no basis entropy, then the state is ρ = ∑D

i |i〉〈i|/D.
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3.2. The property of minimum basis entropy
For most states, regardless of pure states or mixed states, their minimum basis entropy is zero,
which means there exists a complete set of orthogonal projectors, under these projectors, we
can get the full knowledge of this state. But there are some states, their minimum basis entropy
are not zero, which means no matter what projectors we use to measure them, there is always
some information we can not get. This inaccessible information, we will show next, is related
to quantum discord.

Quantum discord comes from the projective measurement[7], just as the basis entropy. For
a bell state, its basis entropy is a constant, so it’s easy for us to calculate its minimum basis
entropy. So let’s take a bell state as an example to explain why the quantum discord is related
to minimum basis entropy. For bell state like (|00〉+ |11〉)/

√
2, the subsystem is A and B, the

discord of this state is

δ(A : B){ΠB
i }

=I(A : B)− J(A : B){ΠB
i }

=S(A) + S(B)− S(A, B)− S(A) + S(A|ΠB
i )

=S(B) + S(A|ΠB
i )

=S(B)
=1

(7)

where I(A : B) is the quantum mutual information between A and B, and J(A : B){ΠB
i }

is the
measurement mutual information between A and B. From this equation we can see that the
quantum discord of this state comes from S(B). Then let’s calculate the basis entropy of the
joint system AB, measure AB by projectors {|00〉〈00|, |01〉〈01|, |10〉〈10|, |11〉〈11|}, and after this
projective measurement the whole system AB will become

ρABpm =
1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (8)

and
BEβ00 = S(ρABpm)− S(ρAB) = 1 = S(B) (9)

Therefore the basis entropy of the joint system AB is equal to the quantum discord between its
subsystems.

For another example, let’s consider the discord of Werner state[8] ρ = (1− z)I/4 + z|ψ〉〈ψ|
with |ψ〉 = (|00〉+ |11〉)/

√
2. One can calculate that the quantum discord of this Werner state

is equal to its basis entropy. For example as shown in Figure 3, when z = 1/3, the value of
quantum discord is 0.1258, it’s basis entropy is also 0.1258.

The quantum discord of Bell states or Werner state are exactly equal to their basis en-
tropy, no matter which orthogonal projectors we used to measure them, like {|0〉〈0|, |1〉〈1|}
or {|+〉〈+|, |−〉〈−|}. This equivalence has two reasons. First, Bell states or Werner state are
invariant under local rotations, so their basis entropy is invariant under different orthogonal
projectors; second, for bell state or werner states, they are states with the maximally mixed
marginals, thus their quantum discord is equal to their minimum basis entropy. This is also true
for ordinary two-qubit system ρ = (I + ∑3

i=1 ciσi ⊗ σi)/4[9] with maximum mixed marginals,
its basis entropy is not a constant. We have shown in appendix C that, its quantum discord is
still equal to its minimum basis entropy. For states without maximum marginals, its nonzero
minimum basis entropy can guarantee its nonzero quantum discord, so we have the following
theorem
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Figure 3: Quantum discord and basis entropy of Werner state

Theorem 2. If a state’s minimum basis entropy is nonzero, there must be quantum
discord between its subsystems.

From the above example we can see that, quantum discord is a symmetric physical quantity
for states like ρ = (I + ∑3

i=1 ciσi ⊗ σi)/4. For asymmetric quantum discord, the theorem still
holds, see discussion in appendix C

4. Basis entropy and coherence
One can see that basis entropy is also highly related to quantum coherence[10]. Except the
formula we use to measure basis entropy showed up naturally. One can find that the formula
use to quantify coherence is actually a special case of basis entropy, it’s a basis entropy with
fixed basis, which means under a specific basis, there is no difference between basis entropy
and coherence. But we can easily see that if a state has no coherence, we can’t guarantee
its maximum basis entropy is zero; if a state’s maximum basis entropy is zero, then it must
have no coherence. This difference between these two concepts has physical meaning. For
example for state |0〉, it has no coherence, we can’t decohere it, since its density matrix has no
off-diagonal elements. But this state’s maximum basis entropy is 1, from this perspective, we
can still further decohere it.

The decoherence about coherence is basis-dependent[14], which means the state can only be
seen as decohered under specific basis. The decoherence about maximum basis entropy is not
basis-dependent, which means if we decohere a state’s maximum basis entropy, the state will
be fully decohered and it can’t be further decohered. Take the following state as an example.

ρ0 =

(
3/4

√
3/2√

3/2 1/4

)
(10)

We decohere this state under basis {|0〉, |1〉}, it will become

ρ′0 =

(
3/4 0

0 1/4

)
(11)
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According to corollary 1, this state has basis entropy, so it can be further decohered. The
corresponding projectors are

P1 =
1
2

(
1 −i
i 1

)
, P2 =

1
2

(
1 i
−i 1

)
(12)

After this , the state becomes

ρ′′0 =

(
1/2 0

0 1/2

)
(13)

According to corollary 1, this state has no basis entropy, so it can’t be further decohered.
Therefore the maximum basis entropy can be used as a criterion to measure how much

the environment can maximum decohere a quantum system, for pure states, they are highly
isolated states and they have the maximum basis entropy, so they are easy to be decohered.
And for state like ρ = ∑D

i |i〉〈i|/D, is actually a classical state, its maximum basis entropy is
zero, so it has been fully decohered, the environment can’t further decohere it.

5. Conclusions
In this paper we have shown that, the increased entropy of a state after a projective measure-
ment is a useful physical quantity, we named this increased entropy as basis entropy and then
we showed some usefulness of this new concept. The maximum basis entropy can be used to
decide whether a state is pure or not, and the minimum basis entropy can be used to detect
the existence of quantum discord. At the end of this paper, we also discussed the difference
between basis entropy and coherence, and showed that basis entropy can be used to describe
decoherence.
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Appendix A
The success probability of Grover’s algorithm: The initial search state is 1√

2n ∑2n−1
x=0 |x〉, the target

state is |x0〉, we can rewrite the initial state as the combination of target state and un-target
states. First of all let’s define two normalized states

|α〉 ≡ 1√
2n − 1

2n−1

∑
x=0

x 6=x0

|x〉

|β〉 ≡|x0〉

(A.1)

where |α〉 represents a sum over all x which are not the state we’re searching for, |β〉 represents
the target state |x0〉. Then the initial search state can be write

|ψ〉 = 1√
2n

2n−1

∑
x=0
|x〉

=

√
2n − 1

2n |α〉+ 1√
2n
|β〉

(A.2)
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As mentioned in [1], we can define cos(θ/2) =
√
(2n − 1)/2n, then |ψ〉 can be write as |ψ〉 =

cos(θ/2)|α〉+ sin(θ/2)|β〉. Then after applying the Grover iteration G = (2|ψ〉〈ψ| − I)O[1] the
state becomes

G|ψ〉 = cos
3θ

2
|α〉+ sin

3θ

2
|β〉. (A.3)

After applying G for k times, the state becomes

Gk|ψ〉 = cos
2k + 1

2
θ|α〉+ sin

2k + 1
2

θ|β〉. (A.4)

Then the success probability is the square of the amplitude of |β〉

psuccess = sin2[
2k + 1

2
θ] (A.5)

The probability psuccess reaches its maximum when k = kmax, kmax should satisfy the following
condition:

(2kmax + 1)
θ

2
=

π

2
(A.6)

considering k must be an integer, so we get kmax = d π
2θ −

1
2e. Generally, 2n is very large and

thus θ is very small, so the following approximation is acceptable

θ ≈ sinθ ≈= 2√
2n

(A.7)

so kmax ≈ dπ
√

2n/4e, this is the desired time we mentioned in the paper before. It is obvious
that under the desired time, with the increase of k, the success probability psuccess is increasing.
For n = 20, the desired time is approximately 805, as shown in Figure 1.

The basis entropy of Grover’s algorithm: Since we’re searching in the state |ψ〉 =

(∑2n−1
i=0 |xi〉)/

√
2n, so we begin with this state. It’s not difficult to check that under measurement

projectors {|0〉〈0|, |1〉〈1|}, its basis entropy is n. No matter how many times we apply the
Grover iteration, the state Gk|ψ〉 is a pure state, its von Neumann entropy is zero, so we just
need to calculate the entropy of the state after projective measurement, which is

ρpm = |0〉〈0|Gk|ψ〉〈ψ|Gk|0〉〈0|+ |1〉〈1|Gk|ψ〉〈ψ|Gk|1〉〈1| (A.8)

which can be write as

ρpm =



cos2 2k+1
2 /(2n − 1)

. . .
cos2 2k+1

2 /(2n − 1)
sin2 2k+1

2 /2n

cos2 2k+1
2 /(2n − 1)

. . .
cos2 2k+1

2 /(2n − 1)


2n×2n

so we get

S(ρpm) = −[cos2 2k + 1
2

log2(cos2 2k + 1
2

/(2n − 1)) + sin2 2k + 1
2

/2nlog2(sin2 2k + 1
2

/2n)] (A.9)
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Thus

BEgrover =S(ρpm)− S(Gk|ψ〉〈ψ|Gk)

=− [cos2 2k + 1
2

log2(cos2 2k + 1
2

/(2n − 1)) + sin2 2k + 1
2

/2nlog2(sin2 2k + 1
2

/2n)]

(A.10)

With the increase of k, the basis entropy of the state Gk|ψ〉 is decreasing, while the success
probability is increasing, as shown in Figure 1.

Appendix B
In this appendix, we will prove that for any 2-dimensional pure state, its maximum basis
entropy is 1. For any 2-dimensional pure state, we can write its density matrix as

ρ =
1
2

I + aσ1 + bσ2 + cσ3 (B.1)

where a, b, c are coefficients and σ1, σ2, σ3 are pauli matrices. The measurement projectors are

{Bk = VΠkV† : k = 0, 1} (B.2)

where {Πk = |k〉〈k| : k = 0, 1}, V ∈ U(2). And V can be written as V = tI + i−→y −→σ , with t ∈ R,−→y = (y1, y2, y3) ∈ R3, and t2 + y2
1 + y2

2 + y2
3 = 1. We only need to prove that

S(B1ρB1 + B2ρB2) = 1. (B.3)

After calculation we get

ρpm = B1ρB1 + B2ρB2 =
1
2

I + (az1 + bz2 + cz3)(z1σ1 + z2σ2 + z3σ3) (B.4)

where

z1 = 2(−ty2 + y1y3);
z2 = 2(ty1 + y2y3);

z3 = t2 + y2
3 − y2

1 − y2
2.

(B.5)

After further calculation, we get the eigenvalues of the ρpm

λ1 =
1
2
−√(a2z4

1 + a2z2
2z2

1 + a2z2
3z2

1 + 2abz2z3
1 + 2abz3

2z1 + 2abz2z2
3z1 + 2acz3z3

1 + 2acz3
3z1 + 2acz2

2z3z1

+b2z2
2z2

1 + b2z4
2 + b2z2

2z2
3 + 2bcz2z3z2

1 + 2bcz2z3
3 + 2bcz3

2z3 + c2z2
3z2

1 + c2z4
3 + c2z2

2z2
3);

λ2 =
1
2
+
√
(a2z4

1 + a2z2
2z2

1 + a2z2
3z2

1 + 2abz2z3
1 + 2abz3

2z1 + 2abz2z2
3z1 + 2acz3z3

1 + 2acz3
3z1 + 2acz2

2z3z1

+b2z2
2z2

1 + b2z4
2 + b2z2

2z2
3 + 2bcz2z3z2

1 + 2bcz2z3
3 + 2bcz3

2z3 + c2z2
3z2

1 + c2z4
3 + c2z2

2z2
3)

(B.6)

In order to make S(ρpm) = 1, we need to make sure

√
(a2z4

1 + a2z2
2z2

1 + a2z2
3z2

1 + 2abz2z3
1 + 2abz3

2z1 + 2abz2z2
3z1 + 2acz3z3

1 + 2acz3
3z1 + 2acz2

2z3z1

+b2z2
2z2

1 + b2z4
2 + b2z2

2z2
3 + 2bcz2z3z2

1 + 2bcz2z3
3 + 2bcz3

2z3 + c2z2
3z2

1 + c2z4
3 + c2z2

2z2
3) = 0.

(B.7)
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Using (B.5) and the following condition

t2 + y2
1 + y2

2 + y2
3 = 1 (B.8)

we get formula (B.7) equals 2a(−ty2 + y1y3) + 2b(ty1 + y2y3) + c(t2 + y2
3 − y2

1 − y2
2), then we

only need to make sure 2a(−ty2 + y1y3) + 2b(ty1 + y2y3) + c(t2 + y2
3 − y2

1 − y2
2) = 0. Clearly,

this equation has qualified solutions, for example, one of the solutions is

t =
1
ac

2a2

√
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

− bc

√
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

+

c2

√
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

− 4a2

(
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

)3/2

−

2b2

(
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

)3/2

+ 4bc

(
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

)3/2

−

2c2

(
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

)3/2
 ;

y1 = 0;

y2 =

√
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

;

y3 =

√
a2

P
+

c2

P
− bc

P
−
√

a4 − 2a2bc
P

.[

(B.9)

where P = 2(2a2 + b2 − 2bc + c2) And then we can get

V =

(
t + iy3 iy1 + y2

iy1 − y2 t− iy3

)
(B.10)

Then measure ρ = 1
2 I + aσ1 + bσ2 + cσ3 by projectors {Bk = VΠkV† : k = 0, 1}, we can get

S(B1ρB1 + B2ρB2) = 1

Appendix C
For an ordinary two-qubit state like

ρ =
1
4
(I +

3

∑
i=1

ciσi ⊗ σi)

=
1
4


1 + c3 0 0 c1 − c2

0 1− c3 c1 + c2 0
0 c1 + c2 1− c3 0

c1 − c2 0 0 1 + c3


(C.1)
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As shown in [9], the quantum discord of this state is

Q =I(ρ)− C(ρ)

=
1
4
[(1− c1 − c2 − c3)log2(1− c1 − c2 − c3)

+(1− c1 + c2 + c3)log2(1− c1 + c2 + c3)

+(1 + c1 − c2 + c3)log2(1 + c1 − c2 + c3)

+(1 + c1 + c2 − c3)log2(1 + c1 + c2 − c3)]

−1− c
2

log2(1− c)− 1 + c
2

log2(1 + c)

(C.2)

where c is defined as c := max{|c1|, |c2|, |c3|}, I(ρ) is quantum mutual information, and C(ρ) is
measurement mutual information. The basis entropy of this state is

BE = S(∑
j

BjρBj)− S(ρ) (C.3)

where {Bj = VΠkV† ⊗ VΠlV† : j = 0, 1, 2, 3; k = 0, 1; l = 0, 1}, {Πk = |k〉〈k| : k = 0, 1},
V ∈ U(2). And V can be written as V = tI + i−→y −→σ , with t ∈ R, −→y = (y1, y2, y3) ∈ R3, and
t2 + y2

1 + y2
2 + y2

3 = 1. Which means

ρpm =∑
j

BjρBj

=
1
4
(I + ∑

i
∑

k
∑

l
ciVΠkV†σiVΠkV† ⊗VΠlV†σiVΠlV†)

(C.4)

After calculation, we get

ρpm =
1
4
(I + (c1z2

1 + c2z2
2 + c3z2

3)Vσ3V† ⊗Vσ3V†) (C.5)

where z1 = 2(−ty2 + y1y3), z2 = 2(ty1 + y2y3), z3 = t2 + y2
3 − y2

1 − y2
2. The eigenvalues of this

ρpm is

µ1 =
1− c1z2

1 − c2z2
2 − c3z2

3
4

µ2 =
1− c1z2

1 − c2z2
2 − c3z2

3
4

µ3 =
1 + c1z2

1 + c2z2
2 + c3z2

3
4

µ4 =
1 + c1z2

1 + c2z2
2 + c3z2

3
4

(C.6)

while the eigenvalues of ρ is

λ1 =
1− c1 − c2 − c3

4

λ2 =
1− c1 + c2 + c3

4

λ3 =
1 + c1 − c2 + c3

4

λ4 =
1 + c1 + c2 − c3

4

(C.7)
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So the basis entropy will be

S(ρpm)− S(ρ) =
1
4
[(1− c1 − c2 − c3)log2(1− c1 − c2 − c3)

+(1− c1 + c2 + c3)log2(1− c1 + c2 + c3)

+(1 + c1 − c2 + c3)log2(1 + c1 − c2 + c3)

+(1 + c1 + c2 − c3)log2(1 + c1 + c2 − c3)]

−1− c1z2
1 − c2z2

2 − c3z2
3

2
log2(1− c)− 1 + c1z2

1 + c2z2
2 + c3z2

3
2

log2(1 + c)

(C.8)

Make c = max{|c1|, |c2|, |c3|} and notice that z2
1 + z2

2 + z2
3 = 1, we get the minimum basis

entropy:

S(ρpm)− S(ρ) =
1
4
[(1− c1 − c2 − c3)log2(1− c1 − c2 − c3)

+(1− c1 + c2 + c3)log2(1− c1 + c2 + c3)

+(1 + c1 − c2 + c3)log2(1 + c1 − c2 + c3)

+(1 + c1 + c2 − c3)log2(1 + c1 + c2 − c3)]

−1− c
2

log2(1− c)− 1 + c
2

log2(1 + c)

(C.9)

which is exactly the quantum discord between subsystems A and B.
Quantum discord between subsystems in state ρ = (I + ∑3

i=1 ciσi ⊗ σi)/4 is a symmetric
quantity, but for others joint states, quantum discord may not be a symmetric quantity. For
example, for state like

ρ =
1
4


2 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

 (C.10)

The quantum discord δ(A : B){ΠB
i }

is nonzero, while δ(B : A){ΠA
i }

is zero. Although the
quantum discord of this system is not symmetric, we can prove that the minimum basis entropy
of this state is nonzero, which means theorem 2 still holds. One thing we should note here is
that, when the quantum discord is not symmetric, the minimum basis entropy is not exactly
the same as the non-zero quantum discord. Take the above state (C.10) as an example, its
quantum discord δ(A : B){ΠB

i }
= 0.1887, the measurement projectors are

B0 =
1
2

(
1 0
0 0

)
, B1 =

1
2

(
0 0
0 1

)
(C.11)

while the minimum basis entropy of the joint state is

BEmin =S[
1
4


2 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

]− S[
1
4


2 0 0 0
0 0 0 0
0 0 1 1
0 0 1 1

]

=1.5− 1
=0.5 6= 0.2896

(C.12)

So, the minimum basis entropy of the joint system could be used as a detector of quantum
discord, it would be inappropriate to use it to quantify quantum discord in some states.
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