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Abstract. We study multiple period states (i.e., states whose period is a multiple of the
lattice constant) of a two-component unpolarized superfluid Fermi gas in an optical lattice
along the crossover between the Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensate
(BEC) states. By solving Bogoliubov-de Gennes equations for a superfluid flow with finite
quasimomentum, we find that, in the BCS side of the crossover, the multiple period states can
be energetically favorable compared to the normal Bloch states and their survival time against
dynamical instability drastically increases, suggesting that these states can be accessible in
current experiments. This is in sharp contrast to the situation in BECs.

1. Introduction: nonlinear phenomena in superfluid Fermi gases in an optical
lattice
Interplay between the nonlinearity due to the emergence of the superfluid order parameter
and the periodicity of the lattice is very intriguing because these two are essential elements
in condensed matter. Ultracold atomic gases in optical lattices enable us to study the subtle
interplay of these effects deeply and directly (see, e.g., [1] for review) because of their high
controllability of both the lattice geometry and the interatomic interaction (characterized by
the s-wave scattering length as) (see, e.g., [2, 3]). Especially, by changing the interatomic
interaction in superfluid Fermi gases using a Feshbach resonance, one can go along the crossover
from the weakly coupled Bardeen-Cooper-Schrieffer (BCS) state to the Bose-Einstein condensate
(BEC) state of tightly bound bosonic dimers [4, 5, 6, 7, 8], which allows us to study Bose and
Fermi superfluids from a unified perspective.

Emergence of multiple period states, namely a class of stationary states whose period does
not coincide with that of the external potential, but is a multiple of it, is a typical nonlinear
phenomenon. For BECs in a periodic potential, it was found that multiple period states appear
due to nonlinearity of the interaction term of the Gross-Pitaevskii (GP) equation [9]. However,
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these multiple period states in BECs are energetically unfavorable compared to the normal Bloch
states whose period is equal to the lattice constant, and the lowest multiple period states are
dynamically unstable [9].

Nonlinear phenomena in Fermi superfluids in a periodic potential [10, 11, 12] can be more
important compared to those in Bose superfluids because of the wide implications for various
systems in condensed matter physics and nuclear physics such as superconducting electrons in
solids and superfluid neutrons in neutron stars (e.g., [13, 14, 15]). However, unlike the case of
Bose gases, the study of nonlinear phenomena of superfluid Fermi gases is at a very infant stage
(see, e.g., [16, 17]) and little has been studied about multiple period states in superfluid Fermi
gases. Therefore, even a fundamental problem whether multiple period states exist along the
BCS-BEC crossover was still open.

Under such circumstances, we have studied multiple period states in superfluid Fermi gases
in [18]. In the present article, we summarize main results of this work (see also [1]).

2. Setup of the problem and formalism
We consider ultracold superfluid Fermi gases in the BCS-BEC crossover in a three-dimensional
(3D) system flowing through a 1D optical lattice,

Vext(r) = Vext(z) ≡ sER sin2 qBz, (1)

where s is the dimensionless parameter characterizing the lattice strength, ER ≡ h̄2q2B/2m is
the recoil energy, qB ≡ π/d is the Bragg wave vector, and d is the lattice constant. We assume
that the system is uniform in the transverse directions. We approach this problem by numerical
simulations based on the Bogoliubov-de Gennes (BdG) equations [19, 8] for a supercell containing
a multiple number of unit cells,(

H ′(r) ∆(r)
∆∗(r) −H ′(r)

)(
ui(r)
vi(r)

)
= εi

(
ui(r)
vi(r)

)
(2)

with H ′(r) = − h̄2

2m
∇2 + V (r)− µ and µ being the chemical potential. Here, vi(r) and ui(r) are

the quasiparticle amplitudes, associated with the probability of occupation and unoccupation of
a paired state denoted by an index i, and εi is the corresponding eigenenergy. The quasiparticle
amplitudes vi(r) and ui(r) satisfy the normalization condition,

∫
dr [u∗i (r)uj(r) + v∗i (r)vj(r)] =

δi,j . ∆ is the order parameter (or the pairing field), which reduces to the pairing gap in the
single quasiparticle spectrum in the region of µ > 0 for the uniform system. The pairing field
∆(r) and the chemical potential µ in equation (2) are self-consistently determined from the gap
equation,

∆(r) = −g
∑
i

ui(r)v∗i (r) (3)

with g being the coupling constant for the s-wave contact interaction which needs to be
renormalized [20, 21, 22], and the average number density

n0 =
N

V
=

1

V

∫
n(r) dr =

2

V
∑
i

∫
|vi(r)|2dr . (4)

In the following, EF and kF denote the Fermi energy and wavenumber of a uniform free Fermi
gas with density n0: EF = h̄2k2F /(2m) and kF = (3π2n0)

1/3. Since ∆ depends on {ui} and {vi},
the BdG equations (2) are nonlinear for nonzero g.

In this formalism, a stationary motion of the superfluid in the z direction, relative to the
infinite periodic potential at rest, is described by solutions of equation (2) with quasimomentum
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Figure 1. Profiles of (a) the magnitude of the pairing field |∆(z)| and (b) the density n(z)
of the lowest period-doubled states at their first Brillouin zone edge P = Pedge/2 = h̄qB/4
for various values of 1/kFas. Other parameters are s = 1 and EF /ER = 0.25. In the deep
BCS side (1/kFas = −1), unlike |∆(z)|, there is no large difference in n(z) between the regions
of −1 < z/d ≤ 0 and 0 < z/d ≤ 1. However, this difference becomes more significant with
increasing 1/kFas. This figure is taken from [18].

P per atom (not per pair), or the corresponding wave vectorQ = P/h̄, such that the quasiparticle
amplitudes can be written in the Bloch form as ui(r) = ũi(z)e

iQzeik·r and vi(r) = ṽi(z)e
−iQzeik·r

leading to the pairing field as ∆(r) = ei2Qz∆̃(z). Here, ∆̃(z), ũi(z), and ṽi(z) are periodic
functions with period ν times d, with ν ∈ {1, 2, 3, · · · }, and the wave vector kz of the quasiparticle
lies in the first Brillouin zone for a supercell (a cell containing several primitive cells) with period
ν, i.e., |kz| ≤ qB/ν.

3. Results
In figure 1, we show the magnitude of the pairing field |∆(z)| and the number density
n(z) of the lowest period-doubled states (i.e., period 2d) at their first Brillouin zone edge
P = Pedge/2 = h̄qB/4 (Pedge ≡ h̄qB/2 denotes the quasimomentum at the first Brillouin zone
edge of the normal Bloch states with period d). At this value of P = Pedge/2, reflecting the fact
that the current is zero, |∆(z)| of the period-2 states has a node. The period-2 nature and the
difference between the regions of −1 < z/d ≤ 0 and 0 < z/d ≤ 1 can be clearly seen in |∆(z)| at
any value of 1/kFas. On the other hand, especially in the BCS side (1/kFas = −1), there is no
large difference in n(z) between the two regions [see the red line in figure 1(b)]. Going to the
deep BCS regime, the period-2 nature is mainly possessed by the pairing field, which decreases
to zero. This reflects the fact that our period-doubled states emerge due to the superfluidity.
Furthermore, we have found that the period-doubled states become energetically more stable
compared to the normal Bloch states in the BCS regime (see figure 2). This is in sharp contrast
to the situation of the period-doubled states in BECs and in the BEC side of the BCS-BEC
crossover.

In the deep BCS regime, the period-2 states are not only energetically more stable, but also
they can be long-lived although dynamically unstable. We have studied the dynamical stability
of the period-2 states by solving the time-dependent BdG equations [18]. The black solid line in
figure 3 shows the growth rate γ of the fastest exponentially growing mode |η(t)| = |η(0)| eγt of
the deviation |∆(x, t)|−|∆0(x)| from the true stationary state ∆0(x) for the period-2 states. We
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Figure 2. Difference ∆E of the energy per particle in units of ER between the normal Bloch
states and period-doubled states at P = Pedge/2. Here we define ∆E ≡ E2 − E1, where E1

and E2 represent the energy of the normal Bloch states and that of the period-doubled states,
respectively. Parameters we have used are s = 1, 2 and EF /ER = 0.25. The red solid line with
+ (s = 1) and blue solid line with × (s = 2) show the results obtained by solving the BdG
equations and the green dashed line shows the results by the GP equation for corresponding
parameters. Note that, in the BCS side, the energy of the period-doubled states at P = Pedge/2
is lower than that of the normal Bloch states while the latter is lower than the former in the
deep BEC side. This figure is taken from [18].
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Figure 3. Growth rate γ of the fastest growing mode (black solid line) and survival time τsurv
of the period-2 state at P = Pedge/2 (s = 1 and EF /ER = 0.25). Blue dashed-dotted, green
dotted, magenta dashed double-dotted, and red dashed lines show τsurv for relative amplitude
η̃(0) of the initial perturbation of 10%, 1%, 0.1%, and 0.01%, respectively. This figure is taken
from [18].

see that γ is suppressed with decreasing 1/kFas, which makes the period-2 states long-lived in
the BCS regime. The growth rate γ corresponds to the imaginary part of the complex eigenvalue
for the fastest growing mode obtained by the linear stability analysis [23, 2], which is intrinsic
property of the initial stationary state independent of the magnitude of the perturbation.
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On the other hand, the actual survival time τsurv, the timescale for which the initial
state is destroyed by the large-amplitude oscillations, depends on the accuracy of their initial
preparation. The survival time can be estimated by η̃(0)eγt ∼ 1, where η̃(0) is the relative
amplitude of the initial perturbation with respect to |∆0| for the fastest growing mode. In
figure 3, we show τsurv for various values of η̃(0). This result suggests that if the initial stationary
state is prepared within an accuracy of 10% or smaller, this state safely sustains for time scales
of the order of 100h̄/ER or more in the BCS side, corresponding to τsurv of more than the
order of a few milliseconds for typical experimental parameters [24]: For the recoil energy of
bosonic molecules ER,b = 2π × 7.3kHz × h̄ used in the experiment of [24], 1h̄/ER = 0.0109
msec. In the deep BCS regime (1/kFas � −1), τsurv increases further and may become larger
than the time scale of the experiments, so that the period-doubled states can be regarded as
long-lived states and, in addition, they have lower energy than the normal Bloch states in a finite
range of quasimomenta. Therefore, by (quasi-)adiabatically increasing the quasimomentum P
of the superflow starting from the ground state at P = 0, multiple-period states such as the
period-doubled states could be realized experimentally in the deep BCS regime.

4. Summary and conclusion
Study of nonlinear phenomena in superfluid Fermi gases is a new research frontier. Indeed, the
system of superfluid Fermi gas has richer physics compared to that of a Bose gas: Feshbach
resonances enable us to explore the crossover between two limiting cases of the weakly coupled
Bardeen-Cooper-Schrieffer (BCS) state and the Bose-Einstein condensate (BEC) state of tightly
bound bosonic dimers. Furthermore, this system could provide implications for other interesting
systems such as matter in neutron stars.

Emergence of stationary states whose period is a multiple of the lattice constant, i.e., multiple
period states is a typical nonlinear phenomenon. In [18], we have studied multiple period states
of superfluid Fermi gases in an optical lattice. By solving Bogoliubov-de Gennes equations,
we have found that, in the BCS side of the crossover, the multiple period states can be
energetically favorable compared to the normal Bloch states and their survival time against
dynamical instability drastically increases, suggesting that these states can be accessible in
current experiments [24].
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