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Abstract. The problem of optimization of particle beam dynamics in accelerating system is 

considered in the case when control process quality is estimated by several functionals. 

Multicriterial approach is used. When there are two criteria, compromise curve may be 

obtained. If the number of criteria is three or more, one can select some criteria to be main and 

impose the constraints on the remaining criteria. The optimization result is the set of efficient 

controls; a user has an opportunity to select the most appropriate control among them. The 

paper presents the results of multicriteria optimization of beam dynamics in linear accelerator 

LEA-15-M. 

1.  Introduction 

The paper is devoted to multicriteria optimization of charged particle beam dynamics. The problem of 

beam dynamics optimization in accelerating and focusing systems is urgent and widely studied by 

many researchers. Saint-Petersburg State University takes part in the research in this area; in 

particular, the books and papers [1-9] should be mentioned. 

Many beam dynamics optimization problems are conceptually multicriterial because there are 

several beam characteristics to be improved or restricted, and one has to introduce multiple quality 

criteria in order to find the best solution. Such an approach is considered in [10-11]. 

When several criteria are conflicting, the improvement of one of them leads to the worsening of the 

others. In this case multicriteria optimization is preferable. The optimization result is the set of 

efficient controls providing quality criteria vectors that can’t be improved. The optimization problems 

with conflicting criteria are, in particular, treated in [10], [12-15]. 

2.  Trajectory ensemble control problem 

Let particle beam evolution be described by the following differential equations presented in [1]: 
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Here  Tt ,0  is independent variable; T  is a constant; 
nEx   is n -dimensional vector of 

particle phase coordinates; nE  is n -dimensional Euclidean space; )(tuu   is r -dimensional control 

function; ),,( uxtf  is n - dimensional vector function; 
0M  is an open bounded set of non-zero 

measure; )(0 x  is continuously differentiable nonnegative function and  

0
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Let us assume the initial particle phase state 0
x  to be the value of random variable 

0
X  with 

probability density )(
00

x . Consider particle phase state ),,( 0 uxtx  to be the value of an n -

dimensional random variable 
tX  with probability density ),( xt . Let us assume ),,( uxtf  to be 

sufficiently smooth function and control )(tuu   to be piecewise continuous.  

So for every admissible control )(tu  the ensemble of trajectories ),,(
0

uxtx  emanating from 
0M  is 

introduced. The set  
000, :),,( MxuxtxxM tut   is called trajectory ensemble cross-section. 

Let us introduce beam dynamics quality criterion to be a functional of the form 
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where )(),,( xgxt  are smooth nonnegative functions. The integrands mentioned are chosen to 

correspond the physical meaning of quality functional. For example, they may be penalty functions 

providing the restrictions account [2], [15-18].  

The problem of functional (1) minimization with respect to control vector )(tu  is defined to be 

trajectory ensemble programmed control problem. The function )()0( tu  providing functional (1) 

minimum is determined to be optimal control.  

3.  Formulation of multicriteria optimization problem 

When treating beam dynamics optimization problems, we often use several criteria, sometimes 

conflicting. Let us consider the example, specifically, the problem of longitudinal beam dynamics 

control in travelling-wave linear accelerator. Particle phase state is described by the vector 

))(),(()( tttx  , where   is reduced energy and   is the phase. The optimization objectives are as 

follows: 1) to maximize bunching coefficient; 2) to provide the required energy ̂  at device exit; 3) to 

maximize capture coefficient 
c

k  in the acceleration mode. The analogous problems are investigated in 

[1-2], [18]. 

We can formulate trajectory ensemble control problem to be multicriteria optimization problem 

following [9], [14]. Let us introduce the criteria 3,1),( iuK
i

 corresponding to the objectives 

mentioned above. The particular criteria 2,1),( iuK
i

, may be suggested in the form 
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The integrand )(Ф  is penalty function defined as follows: 
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Here )(),( maxmin tt   are given functions describing the admissible phase boundaries. The integrand 

for the second particular criterion is 2)ˆ()(  G . The third criterion 
ckuK )(3

 is not represented 

in the integral form and is calculated numerically.  

So we consider the criteria vector ))(),(),(()( 321 uKuKuKuK   instead of the functional (1). The 

problem is formulated to minimize the criteria 2,1),( iuK
i

 and to maximize the criterion )(3 uK . 

Now we will transform the problem formulation to obtain the convenient visual representation of 

the Pareto set (i.e. the set of unimprovable criteria vectors). Let us choose the first two criteria to be 

main and impose the restriction on the third criterion: 

 
*

c3
)( kuK  ,  

where *

c
k  is capture coefficient lower boundary. Using this approach we can obtain the Pareto set for 

two main criteria (it is the compromise curve). 

4.  Optimization algorithm 

The algorithm of approximate compromise curve constructing is described in [9-10] in detail. In short 

form it can be presented as follows. Let us assume the 

control vector u  to depend on the vector of parameters 

),,(
1 p

   taking values in a given set 
pE , i.e. 

)(uu  . 

1). Simulation of N  random vectors 
  N=i,θ i 1,  

uniformly distributed in  . The simulation methods are 

described in [14,19]. Control functions ),( )()( ii uu   

N=i 1,  obtaining. 

2). Approximate calculation of trajectories of J  model 

particles for every control .,1,)( Niu i   Calculation of 
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the use of Monte Carlo method expounded in [15,19]. 
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4). Selection of unimprovable points in the set V  according to the method given in [9-10], [14]. The 

points selected constitute the approximate compromise curve. The corresponding controls are called 

the approximately efficient controls. 

5.  Numerical results 

The device under consideration is travelling-wave accelerator LEA-15-М [9] with initial energy 

400 W  keV, structure length 78.0L  m and accelerating wavelength 1.0 m. The numerical 

experiment was carried out for N 150 random vectors of parameters and 50J  model particles. 

Table 1. The values of main criteria and capture 

coefficient. 

K1 K2 K3 

0.0027 1.4563 0.94 

0.0066 1.1284 0.90 

0.0080 0.9685 0.92 

0.0014 1.6221 0.90 

0.0120 0.6424 0.91 

0.0065 1.2440 0.90 

 
Figure 1. The points of the set V in 

main criteria space. 
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The points of the set V  in main criteria space are presented at Fig. 1. The points of the 

approximate compromise curve are marked. 
Table 1 presents the values of main criteria for the points of the approximate compromise curve 

and corresponding values of capture coefficient. 
The controls obtained as a result of multicriteria optimization provide sufficiently high beam 

quality at accelerator exit. A user can select the proper control among approximately efficient controls 

taking into account beam and device characteristics obtained. 

6.  Conclusion 

When treating beam dynamics optimization problems, we often use several criteria, sometimes 

In this paper multicriteria approach is applied to beam dynamics optimization problem. Multicriteria 

optimization of longitudinal beam dynamics in linear accelerator is carried out. The approximate 

compromise curve is obtained. 

Multicriteria optimization method is especially effective in combination with directed methods 

based on the analytical representation of quality functional variation obtained by Ovsyannikov [1]. 

Any approximately efficient control may be used as initial control for the directed method. 
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