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Abstract. Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were 

imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation 

neutron source. Single crystal neutron diffraction showed that the crystal produces two twin 

variants with a specific crystallographic relationship. Transmission images were captured using 

a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions 

were clearly distinguishable in images corresponding to narrow-energy transmission images. 

Further, the spatially-resolved transmission spectra were used to elucidate the orientations of 

the crystallites in the different volumes of the crystal.  

1.  Introduction 

 

Large actuation strains, at least an order of magnitude higher than magnetostrictive materials [1], can 

be achieved in the class of materials known collectively as “magnetic shape memory alloys”. The 

interplay between the high temperature cubic phase and low temperature monoclinic/tetragonal phase 

(with several twin variants) can be exploited in these alloys to achieve large reversible strains in the 

stress-temperature-field (magnetic) space. The most successful system in this class of alloys has been 

the Heusler alloy, Ni2MnGa, which has been studied as the subject of this article. We have used 

neutron imaging and diffraction to study twin variants in the low temperature monoclinic phase (so 

called ‘martensite’) in single crystalline samples of Ni2MnGa. The monocrystals have a modulated 

ordered monoclinic crystal structure at room temperature [2]. The cell angles are close to 90 degrees, 

making the tetragonal assumption reasonable in many cases.  

 

Owing to a very low twinning stress, the application of an external magnetic field (<0.5 T) is 

sufficient to twin the crystal into another orientation. As the orientation of the twin variants is 

different, so is the magnetization direction [3][4]. Therefore, as the field direction is changed, a 

different twin variant is formed. This is illustrated in figure 1(a) which shows that the twins prefer the 

crystal c-axis parallel to the externally applied magnetic field. These twins grow and eventually the 
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entire crystal is transformed into the new twinned variant, if a strong enough (>0.65 T) external field is 

applied.  

 

In this study, we have used single crystal neutron diffraction to find the relative orientations 

of the twinned crystals and neutron imaging to resolve the morphology of the twins and the untwinned 

material. Given that these were bulk crystals (several millimetres) neutron methods proved ideal to 

study them owing to high neutron penetration. Neutron imaging with a high-resolution neutron 

imaging detector was performed in time of flight (TOF) mode to discriminate the energies of the 

neutrons. This not only helped in enhancing the contrast between the twins but also the full energy 

dispersive spectra obtained could be used for further analysis of spatially resolved orientations, strains 

etc.  

 

2.  Experiments and data analysis 

 

2.1.  Sample history 

 

Single crystals of Ni2MnGa with a 5M modulation along the c-axis were obtained from Adaptamat 

Ltd.[5]. The composition of the samples was 50at.%Ni, 28.5at.%Mn and 21.5at.%Ga and the 

martensitic transformation temperature was ~50
o
C. The cuboid crystals were 5 x 5 x 15 mm in size, 

with the {100} axis along the length of the crystal and the other two crystallographic axis roughly 

along the remaining edges. Parts of the samples were exposed to an external magnetic field using a 

Neodymium based permanent magnet. This introduced a region in the crystal which was twinned with 

respect to the rest of the original crystal. The magnetic field was subsequently removed and the 

partially twinned system was used for neutron experiments. The removal of the field, did not de-twin 

the crystal as twinning is not reversible in these materials without the application of an external field 

or stress.  

 

2.2.  Single crystal neutron diffraction 

 

The crystals were measured on the SXD [6] instrument at the ISIS neutron source. The crystals were 

exposed to the neutron beam for ~20 minutes. The beam size was greater than the sample dimensions 

and therefore the entire sample including the original crystal and the twin contributed towards the 

detected signal. SXD comprises of 11 position sensitive detector panels which subtends a large solid 

angle on to the sample resulting in a large number of diffraction spots to be utilized. Automated peak 

and cell finding was achieved using the SXD2001 software [7] starting with an initial cell reported in 

[2]. Two distinct crystalline orientations were found using the automated algorithm. Figure 1(b) shows 

the orientation relation between the two crystalline orientations that were found using the SXD data. 

The atomic positions shown in the figure were from the reported crystal structure in reference [2] and 

were not refined. The orientation of the twin is essentially a ~90 degree rotation about the b-axis of the 

original crystal thereby swapping the directions of the a-axis and c-axis. 
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Figure 1.  (a) Schematic diagram 

showing how different parts of 

the crystal transform to different 

twin variants as the applied field 

direction is varied. (b) Schematic 

diagram showing the orientation 

relation between the two twin 

variants obtained from the  

neutron diffraction analysis. 

 

 

 

 

2.3.  Neutron Imaging 

 

Imaging experiments were performed on the ROTAX [8] test beamline at the ISIS neutron source. 

Simple transmission geometry was used with the sample placed between the beam and the detector 

(figure 2). The area detector was placed nominally perpendicular to the beam and the sample was 

placed ~12 mm to the detector active area. The b-axis of the original (untwinned) crystal was 

approximately parallel to the beam.  

 

The MCP/Timepix detector (figure 2) used for the imaging experiments [9],[10] allowed 

measurement of the neutron energy for each detected particle. The position of each neutron was 

detected with the accuracy of 55 µm (current detector pixel size) and timing binning of 20 µs for 

thermal and cold neutrons. Multiple frames where acquired for each neutron pulse. The acquisition 

system was synchronized with the trigger of the neutron source, providing the possibility to calculate 

the energy of each neutron from its time of flight. The active area of the detector was 28x28 mm
2
, 

defined by the 2x2 array of Timepix readout ASICs, developed by the Medipix collaboration [11]. The 

neutrons arriving at the active area of the detector are converted into an electron cloud by the neutron 

sensitive microchannel plates, manufactured by Nova Scientific. Each neutron produces ~10
4
-10

5
 

electrons, thus enabling operation with no readout noise. This detector will be used as a standard 

equipment on the IMAT imaging beamline [12]. 

 

 

 
Figure 2. Geometry of the neutron imaging experiment. The sample was mounted close (few mm) to 

the neutron window of the detector head.  

 

The imaging measurement resulted in a stack of images of dimensions 512 x 512 pixels each. 

Every image represented a time of flight bin which was later converted to wavelength. Thus the 

transmission spectra consisting of several thousand energy bins was measured for each pixel of the 

(a) (b) 
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data set, all in one experiment. An open beam measurement (without any sample) was also carried out 

under the same setup. This was used to normalize the data both for the flux distribution as a function 

of TOF and for spatial non-uniformity (combination of beam non-uniformity and pixel sensitivity). 

Figure 3(a) shows the white beam radiograph of the twinned crystal where all energies have been 

summed up. No apparent contrast can be inferred. Figure 3(b) shows a corresponding image where 

only the neutrons in the range of 2.7-2.8 Å have been summed. The twin (yellow-green region) and 

original crystal (blue region) are easily distinguishable in this image. The neutron intensities as a 

function of wavelength have been plotted in figure 3(c). The colored dots on 3(b) indicate both 

locations and the color of the corresponding plots. 

 

 

 

 

 

 
 

  

Figure 3. (a) White beam transmission image of the twinned crystal. (b) Radiograph using a limited 

range of neutron energies showing contrast between original crystal and twin. (c) Transmission spectra 

from the different regions of the original and twinned crystals (the dots on fig b correspond to regions 

sampled and colour of the dot corresponds to the colour of the curve) 

 

3.  Results and discussion 

 

It is evident from Figure 3 that, by limiting the energy range of the imaging data, contrast can be 

enhanced between the differently oriented parts of the crystals. The reason for this is that different 

crystal orientations with respect to the beam results in Bragg condition being satisfied for different sets 

of crystalline planes. The corresponding neutrons that have diffracted are missing in the transmitted 

beam and therefore the characteristic ‘dips’ occur in the transmission spectra (figure 3(c)). Both the 

intensities and the positions of these dips are related to the orientation of the crystals. Markedly, in 

figure 3(c), the red and the green plots look quite similar as compared to the blue plot which is quite 

different from both. This is not surprising, given that the blue plot is from the twinned region of the 

crystal, while both red and green plot are from the original crystal regions. The two original crystal 

regions do show some differences because of slight mis-orientation between them arising due to the 

triangular shape of the twin. 
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Figure 4. Radiographs of the twinned crystals with various energy ranges showing mosaic features in 

the original crystal.  

 

Figure 4 shows the radiographs of the twinned crystals at several chosen energy ranges. The 

figure clearly shows various linear features running along the length of the crystal in the original 

crystal. These linear features on the single crystal are along the growth direction of the single crystal. 

It can be speculated that these are probably due to slight misalignments between subdomains during 

the growth process.   

For future work, the authors plan to study the dynamics of the twinning in these crystals by 

subjecting the crystals to a cyclic magnetic field in situ. These stroboscopic experiments will shed 

light on the twin kinetics and the dependence of twin morphology on external parameters such as 

frequency of rotation and the strength of field.  

4.  Conclusions 

 

Single crystals of Ni2MnGa can spontaneously twin upon the application of an external magnetic field. 

Neutrons are an ideal tool to study these twinned crystals due to their high penetration capability and 

high coherent cross section for this material. Single crystal diffraction shows the orientation relation 

between the untwinned and the twinned regions while high resolution energy dispersed neutron 

imaging shows the morphology of the twinned regions. Further, the mosaic microstructure of the 

original crystal was elucidated during the imaging experiments.   
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