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Abstract. The Beamline for European Materials Engineering Research (BEER) has been 

recently proposed to be built at the European Spallation Source (ESS). The presented concept of 

neutron delivery optics for this instrument addresses the problems of bi-spectral beam extraction 

from a small moderator, optimization of neutron guides profile for long-range neutron transport 

and focusing at the sample under various constraints. They include free space before and after 

the guides, a narrow guide section with gaps for choppers, closing of direct line of sight and cost 

reduction by optimization of the guides cross-section and coating. A system of slits and 

exchangeable focusing optics is proposed in order to match various wavelength resolution 

options provided by the pulse shaping and modulation choppers, which permits to efficiently 

trade resolution for intensity in a wide range. Simulated performance characteristics such as 

brilliance transfer ratio are complemented by the analysis of the histories of “useful” neutrons 

obtained by back tracing neutrons hitting the sample, which helps to optimize some of the 

neutron guide parameters such as supermirror coating. 

1.  Introduction 

The long pulse concept of the European Spallation Source (ESS) brings about new challenges for the 

design of neutron scattering instruments. While other spallation sources provide sufficiently short pulses 

which can be directly used for wavelength definition, the 2.86 ms long pulse of the ESS needs to be 

further tailored in most cases in order to achieve sufficient resolution. It is particularly the case of 

diffraction experiments, where the relative wavelength resolution / below 1% must be achieved at 

short wavelengths. This leads to an increased complexity and cost of such instruments due to the 

installation of choppers for pulse shaping. On the other hand, instruments at ESS can profit from the 

pulse tailoring as it permits to adjust instrument resolution to a particular problem. This feature can bring 

significant advantage over the short pulse sources, where the pulse width and its dependence on the 

wavelength is determined by the moderator and the possibility to trade resolution for intensity is limited 

to adjusting beam divergence [1-3]. However, the possibility of choosing wavelength resolution does 

not provide more flexibility by itself, it has to be accompanied by properly designed neutron optics 

which allows to match the beam properties, especially the divergence, to the wavelength resolution. 
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 This paper introduces the concept of neutron delivery optics for the diffractometer BEER (Beamline 

for European materials Engineering Research) at ESS, which allows for such a flexibility. It is a 159 m 

long time-of-flight (ToF) powder diffractometer that has been proposed to address the needs of materials 

engineers from both academic and industrial areas. It will provide new capacity for in-situ and in-

operando studies of materials under external conditions, which are relevant for materials production, 

treatment and use, but also in the traditional domain of residual strain mapping. In addition, optional 

measurements of small-angle scattering (SANS) and direct imaging are envisaged [4]. This broad scale 

of techniques calls particularly for the above mentioned adaptability of neutron optics. The required 

quantitative characteristics of the neutron beam in the main operation modes are derived in Section 2, 

which is followed by the description of the main components of the neutron transport system (Section 

3). Section 4 then summarizes the performance of the system in terms of brilliance transfer efficiency. 

2.  Required neutron beam characteristics 

Regarding the neutron beam properties, the main criteria for an engineering diffractometer are the 

wavelength resolution and bandwidth, gauge volume size and angular divergence. The neutron transport 

system can be well characterized by the quantity called brilliance transfer (BT) ratio defined as the 

neutron intensity integrated over a pre-defined beam area, solid angle and wavelength interval, relative 

to the source brightness. Due to the Liouville’s theorem, BT ratio ≤ 1. It describes the quality of the 

neutron delivery optics alone, regardless of the source spectrum. It is however important to define the 

integration intervals adequately with respect to the assumed mode of operation. In addition, qualitative 

criteria such as uniformity of angular distribution should be considered. 

2.1.  Wavelength 

While it is relatively easy to transport cold neutrons, the short wavelength limit is critical for the design 

of neutron guides. In contrast to general purpose powder diffractometers, experiments at an engineering 

diffractometer are usually carried out on materials with known crystallographic structure of main 

constituting phases. This partly relieves the requirements on wavelength bandwidth since a smaller set 

of reflections is required for Rietveld analysis to yield data on phase composition, lattice strain or texture 

compared to full structure refinement. From this point of view, the BT ratio close to the lower 

wavelength limit of ≥ 1 Å is a suitable figure of merit for optimizations. Although the instrument can 

operate below 1 Å, its performance there can be traded for other important characteristics without 

significant impact on the scientific output. On the other hand, delivery of cold neutrons up to  6 Å or 

more is also needed in order to be able to measure diffraction in transmission mode (Bragg edge), to 

increase contrast for imaging experiments and to reach suitable momentum transfer range for SANS. 

Therefore, a bi-spectral extraction optics has to be incorporated into the neutron guide feeder.  

2.2.  Gauge volume  

The required beam area varies significantly according to the experiment type. It may be very small 

(below 1 mm2) in the case of residual strain mapping, but also rather large in the case of in-situ 

experiments (typically 5 x 10 mm2). The latter value has been chosen as the integration interval for BT 

evaluation since this is the typical operation mode assumed at BEER.  

2.3.  Trading resolution for intensity 

Tuning of the beam divergence with respect to the required resolution in lattice parameter, d/d is 

assumed for the reasons explained in Section 1. Relaxing resolution in order to boost the neutron flux is 

meaningful only if it leads to an increase, or at least conservation, of the overall figure of merit. Whereas 

various proposals for such a figure of merit in the case of a powder diffractometer can be found in 

literature, the traditional definition as the integral intensity over the square of the peak width, 

 𝐹𝑜𝑀 =  𝐼 (
Δ𝑑

𝑑
)

−2
 (1) 
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is well justified for an engineering diffractometer [5]. The intensity, I is proportional to the phase space 

volume transported by the neutron guides and choppers from the source, that is to the product of the 

widths in wavelength, , horizontal divergence,  and vertical divergence, , 

 𝐼 ∝ Δ𝜆 ⋅ Δ𝛼 ⋅ Δ𝛽 . (2) 

These three components also contribute to the instrument resolution, which can be formally 

expressed as 

 (
Δ𝑑

𝑑
)

2
≅ (

Δ𝜆

𝜆
)

2
+  (

Δ𝛼

2 tan 𝜃
)

2
+  (

ℎ Δ𝛽

8 𝐿𝐷 tan 𝜃 
)

2
 (3) 

where h and LD are the detector height and distance, respectively and 2 is the scattering angle. This 

equation holds only approximately for 2 near ± 90o, it neglects other contributions (sample size, 

detector resolution) and second order effects (aberration), but it still provides a useful guide for the 

estimation of optimum beam divergences. It is important to note that the widths , and  in the 

above equations should take into account different distribution functions of the respective variables. 

They are therefore calculated from the corresponding variances as Δ𝑥2 = 8 ln 2 [〈𝑥2〉 −  〈𝑥 〉2]. 
The highest value of the figure of merit is achieved if all the three terms in equation (3) keep 

approximately the same value. Neutron intensity then increases with the 3rd power of resolution as 

desired. This condition permits to estimate optimum beam divergences for various settings of the pulse 

shaping choppers. Examples for three different resolution modes are given in Table 1, where / was 

calculated from pulse profiles simulated at =2 Å. 

 

Table 1. Wavelength resolutions provided by various chopper settings 

and corresponding optimum horizontal and vertical divergences. 

 resolution /%  mrad  mrad 

high 0.08 1.5 12 

medium 0.20 4.0 32 

low 0.52 10 83 

2.4.  Constraints 

Apart of the beam characteristics given above, the concept of neutron optics must comply with several 

restrictions. One of them is the free space of 2 m between the source and the guide system entry required 

due to radiation heating and source design. This is a major obstacle for efficient neutron transport from 

low dimensional moderators, such as the 30 mm high pancake moderator [6] considered in this work. A 

similar problem occurs on the opposite side, where the minimum 1 m distance between the guide exit 

and sample is required in order to provide space for the large sample environment devices planned for 

BEER. Another limitation arises from the need to install a cascade of choppers in the cavity just after 

the exit from the target monolith, between 6 and 9.5 m from the source. There, several gaps in the 

neutron guide have to be provided for the choppers and the beam width is reduced to about 20 mm in 

order to achieve short transition times. Closing the direct line of sight in order to reduce background 

arising mainly from fast neutrons is relatively easily achieved by bending of the long neutron guide. 

However, the high power of the ESS source requires that this closure takes place before one half of the 

instrument length. This obviously affects the brilliance transport efficiency at short wavelengths. Last, 

but not least, cost is an important factor for such a long neutron transport system. Significant cost 

reduction can be achieved by reducing the cross-section of neutron guides and the critical angle of their 

multilayer coating. Therefore, a trade-off between these parameters and instrument performance has to 

be an integral part of the conceptual design of neutron guides. The following section shows how all 

these requirements were incorporated into the neutron optics concept of BEER. 

 

VI European Conference on Neutron Scattering (ECNS2015) IOP Publishing
Journal of Physics: Conference Series 746 (2016) 012011 doi:10.1088/1742-6596/746/1/012011

3



 

 

 

 

 

 

3.  Components of the neutron optics system  

The initial concept of the instrument has been naturally created on the basis of existing knowledge and 

experience regarding efficient neutron transport over long distances. Recent studies show that very high 

BT ratios can be achieved with elliptic guides or ballistic guides with elliptical ends [7-9]. Although an 

elliptic guide is theoretically an ideal tool for point-to-point focusing, aberration effects strongly 

influence its real performance already with rather small source and target sizes of few millimetres. 

Several strategies for reducing the aberration effects have been suggested in literature, such as the double 

ellipse [10-11] or hybrid elliptic-parabolic guide [12] configurations. However, the extreme eccentricity 

of the elliptic profile required for neutron transport makes the analytical approach based on a single or 

double reflection model unusable in many practical situations, especially in the case of long transport 

distances. Quantitative evaluation of the guide system performance and its optimization therefore 

requires numerical simulations. The advantage of simulations is not only in the high level of physical 

reality they can describe, but also in the ability to yield information that can’t be obtained by other 

means, including measurements. Namely, recording of neutron histories during ray-tracing permits to 

back-trace neutrons that hit the sample and that are thus relevant for an experiment. Analysis of these 

“useful” neutrons can reveal where they come from, where they get absorbed or reflected etc. We have 

used this approach to more deeply analyse properties of the proposed neutron optics system and to 

optimize some of its parameters, such as supermirror coating.  

Neutron optics concept for the BEER instrument is therefore based on the ballistic guide geometry 

with elliptical ends, which was further modified to match the requirements described in Section 2 and 

optimized by ray-tracing simulations with the program SIMRES [13]. For numerical optimizations by 

the particle swarm algorithm [14], we have defined the figure of merit as the BT ratio calculated for the 

beam area 5 x 10 mm2 (width x height) and solid angle 5 x 30 mrad2. This choice corresponds to the 

assumed most usual operation mode with in-situ experiments at the medium resolution (see Table 1). 

The following sections describe the three main parts of the neutron transport system: (i) beam extraction, 

(ii) long-range transport and (iii) focusing at the sample. Their configuration was optimized for the ESS 

pancake source concept [6], assuming 10 cm wide, 3 cm high thermal and cold moderators placed side 

by side, separated by a 2 cm gap. This concept has been recently replaced by a new “butterfly” 

configuration, therefore the parameters given in this paper are probably not the final ones to be used in 

the instrument construction. However, the two moderator geometries are rather similar as for the 

moderators height and separation and the neutron optics can thus be rather easily adapted to the new 

geometry without major modification of the presented concept. 

3.1.  Neutron beam extraction 

The beam extraction starts at 2 m from the source by the 4 m long monolith insert, including the bi-

spectral multi-mirror optics and neutron guides. It is followed by a 3.5 m long chopper cave where the 

guide is interrupted by several gaps and the width is reduced to 20 mm. The guide than expands to reach 

the final cross-section of 40 x 80 mm2 at 15.5 m from the source (figure 1a,b). Vertically, the guide 

profile forms part of a semi-ellipse with the focal distance optimized for the source height of 30 mm.     

In the horizontal plane, the feeder is less important as the moderators are sufficiently wide to over-

illuminate the 2 cm wide beam port at the exit from the monolith. The acceptance area of this setup fits 

well the moderator geometry (see figure 1c).  

The bi-spectral extraction system proposed for BEER has been studied earlier by C. Zendler et al. 

[15]. It consists of an array of 8 semi-transparent mirrors on 0.5 mm thick single crystal Si substrate, 

which transmit thermal neutrons from the thermal moderator, but reflect low-energy neutrons from the 

cold moderator into the same guide. The length of 0.5 m, supermirror coating with m=4 (m=1 

corresponding to the critical angle of Ni, 0.1°/Å) and inclination angle 0.78° were calculated to match 

the beam size and the crossover of the cold and thermal spectra at c=1.95 Å. Given the separation of 

the moderators, the mirrors have to start at about 4.15 m from the source. Good performance of such a 

system was predicted by ray-tracing simulations, showing the efficiency between 70 % and 80 % for 

both thermal and cold neutrons. Note that the “useful” neutrons are extracted from a smaller area on the 
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cold source (figure 1c) due to the focusing effect of the multi-mirror setup which acts as a Laue lens. 

This effect would be enhanced if the device can be placed in the middle between the source and the 20 

mm beam port. 
 

 

 

 

Figure 1. (a) Horizontal profile of the beam extraction including the bi-spectral optics (A), the narrow 

chopper section (B) and the expanding section (C). (b) Corresponding vertical profile. The thin lines 

show a sample of neutron trajectories. (c) Acceptance diagram of the guide system represented by 

the intensity of “useful” neutrons emitted at the source position (the rectangles show the active 

moderator areas).    

3.2.  Long-range neutron transport 

The long guide spanning the distance between the extraction and focusing sections has to tackle two 

main problems: (i) transport of a large vertical divergence over the long distance and (ii) closing the 

direct line of sight for fast particles. Optimization of the vertical profile was carried out in order to 

minimize the guide height (and therefore cost), while keeping a high BT ratio. It has been modeled by 

a ballistic guide of the total length L=154 m spanning the whole length of the guide system. The focal 

length, f of the elliptic ends (practically equal to the major semi-axis length) was taken together with the 

entry and exit heights as a free parameter for numerical optimization. Resulting BT values as a function 

of the guide height (minor axis of the ellipse) are plotted in figure 2. 

 

 
 

Figure 2. (a) Simulated brilliance transfer ratio as a function of the maximum guide height 

with optimized (points) and fixed (dashed lines) lengths of the elliptic sections. The arrows 

point to the two solutions on the right panel. (b) The optimum profile corresponding to a double 

ellipse. (c) The cost-efficient solution with reduced height. 
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This result shows that the guide height can be reduced from a full ellipse configuration (f=L/2) down do 

a ballistic profile enveloping a double ellipse, f=L/4 (figure 2b) without any loss of transport efficiency. 

The guide height can be further reduced if a small performance reduction is accepted, leading to the 

proposed setup with the height of 80 mm (figure 2c) and BT reduction to about 85 % of the maximum. 

Closing the direct line of sight as close as possible to the source requires a compromise to be made 

between the guide curvature and transmission of short wavelength neutrons. Figure 3a shows the 

intensity of illumination of the guide walls by straight rays emitted from the source as simulated by the 

ray-tracing method. The curvature 1/R > 0.06 km-1 is necessary in order to suppress the direct line of 

sight before one half of the instrument length. Figure 3b then illustrates that this value is also near the 

limit of what is acceptable regarding transport efficiency, costing about 8% of brilliance transfer at  

=1 Å. The 126 m long parallel guide with cross-section 40 x 80 mm2 and curvature 0.06 km-1 is therefore 

proposed for BEER as a cost-efficient solution. 

 

a)  b)  

Figure 3. (a) Illumination of the guide walls by direct rays from the source. (b) Decrease of the 

brilliance transfer ratio due to the guide bending as a function of wavelength. 

3.3.  Focusing at the sample 

After the bent parallel guide, neutrons are focused vertically by a 14.5 m long elliptic guide at the sample, 

which is placed 1 m after the guide exit leaving thus enough space for large sample environment. The 

guide width remains constant at 40 mm. This guide is actually divided in 3 sub-sections with the lengths 

9 m, 3.5 m and 2 m, respectively (figure 4a).  

 

  
Figure 4. (a) Focusing section with the exchangeable guide segments. (b-d) Divergence 

distribution at the sample for three resolution modes. (e) Flux distribution at the sample with 

the horizontally focusing segment. 
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The last two sections (A,B) are placed in between a pair of adjustable slits (S1 and S3). These guides 

are removable and can be optionally replaced by another slit (S2) or by another vertically tapered guide, 

which includes a horizontally focusing multichannel segment (C). This system of three slits (S1-S3) and 

three guides (A-C) allows to adjust beam divergence in a wide range (figure 4b-e) as required, although 

the extreme vertical divergence of 83 mrad suitable for low resolution measurements (Table 1) could 

not be reached. 

3.4.  Coating optimization 

Cost of neutron guides strongly depends on the number of coating layers and hence the critical angle. 

Recording of neutron histories during ray-tracing permits to calculate statistical distribution of bouncing 

angles along the guides and thus to find the maximum m value required for the guide coating at given 

positions. Fig. 5 shows such a distribution recorded for the proposed neutron guide system. In this 

simulation, m=5 was considered on all reflecting walls in order to allow for higher reflecting angles. 

However, the figure shows that m=2 is sufficient for most of the neutron guides length except the initial 

part of the beam extraction, the chopper cave, and the tip of the focusing guide.   

 

 
Figure 5. Distribution of bouncing angles along the guides for the left/right (a) and 

top/bottom (b) mirrors. Only “useful” neutrons that hit the sample are recorded. 

4.  Summary characteristics 

The performance of the neutron guide system described in the preceding section has been assessed by 

the simulation of the BT ratio as a function of wavelength over the assumed operation range (see figure 

6) for the medium resolution mode (see figure 4c) with the target area of 5 x 10 mm2 and the acceptance 

solid angle of 5 x 30 mrad2. Physical reality which was taken into account included gravity, Gaussian 

mirror waviness (=0.2 mrad), the sequence of gaps for choppers (figure 1a) and an approximation of 

the elliptic walls by flat segments with lengths varying from 1 m in the middle section to 0.1 m at the 

ends. Without the bi-spectral optics, the BT ratio of 50% was achieved for cold neutrons, which then 

decreased down to 30% at =1Å. The bi-spectral optics add another factor of 70 to 80 % for most of the 

wavelength range of interest. This is less than one may achieve under ideal conditions [8-9], but closer 

to the real situation when various constraints imposed by other technologies (e.g. choppers, sample 

environment) or cost limits have to be taken into account. The loss of BT ratio is mainly due to the non-

uniform filling of the phase space (apparent in figure 4), which results from the combination of two 

factors: (i) small moderator height and the safety distance of 2 m, which do not permit to over-illuminate 

the entrance port of the neutron guide system, and (ii) choosing less than optimal guide height (see 

Section 3.2) for cost efficiency. 
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Figure 6. Brilliance transfer ratio for the 

whole guide system (solid line) and for the 

direct beam without bi-spectral extraction 

(guides only, dashed line). 

5.  Conclusions 

The proposed neutron optical system for the BEER instrument addresses successfully most of the 

instrument requirements and constraints. In particular, it permits to efficiently trade resolution for 

intensity in a broad range facilitated by the pulse shaping and modulation chopper techniques. The 

reduced brilliance transfer ratio due to the bi-spectral extraction, small moderator height and other 

spatial and cost constraints is compensated by the high brightness of the low-dimensional moderator and 

the outlined instrument flexibility. The neutron optics system is well adapted to other key components 

of the instrument, such as the chopper system, detectors and specialized sample environment for 

materials engineering. As the final design of the neutron delivery system for BEER is yet under 

development, this concept is presented with the prospect of serving as a reference for further 

modifications improving the instrument performance. 
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