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Abstract. The thermal conditions inside of switch cabinets are strongly influenced by radiation 

heat transfer. To achieve accurate simulation results for the temperature distribution inside of 

switch cabinets a surface-to-surface radiation model is developed, which calculates the net heat 

flows for given temperatures of the plane, grey, diffuse surfaces. The accuracy of this 

calculation strongly depends on exact values for the radiation view factors. A Monte Carlo 

method is applied to compute the view factors. Several variations for grid spacing, the number 

of emitted photons and a quasi-Monte Carlo method are discussed. The radiation model is 

validated using numerical comparative data for a switch cabinet of given size with and without 

electrical components inside.  
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1.  Introduction 

Packaging density and volumetric dissipation power of electronic components inside of switch 

cabinets for manufacturing increased over the years. This leads to high temperatures inside of switch 

cabinets and with that to a reduction of component life time, which endangers the functionality of the 

whole switch cabinet. That is why most switch cabinets must be equipped with active cooling devices 

[1]. In order to improve the design process of the cooling devices, reliable simulation models for the 

temperature distribution are required. Because of the level of the component surface temperatures 

inside of switch cabinets radiation heat transfer has a strong influence on air temperature distribution. 

Due to unavailable suitable models a surface-to-surface radiation model is developed to compute the 

radiation net heat flows among the component surfaces. The radiation view factors, which depend on 

the arrangement of the surfaces inside the switch cabinet, are computed by a Monte Carlo method. 

2.  Surface-to-Surface radiation model 

For modeling the surface-to-surface radiation it is assumed, that the radiation heat transfer is not 

influenced by the air inside of the switch cabinet. Moreover the radiating surfaces are considered to be 

grey Lambert radiators [2]. That means, that the surfaces are both diffuse grey emitters and reflectors. 

In addition Kirchoff’s law is applied, because of small temperature differences between the radiators. 
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Thus the total hemispherical emissivity ε of the radiating surfaces is equal to the absorptivity 𝛼 and is 

assumed to be constant. 

To compute the net heat flow for each surface within the switch cabinet, it is handy, to define the 

radiosity 𝐻, which is the sum of the emissive power 𝑀 and the reflected part of surface irradiance 𝐸.  

𝐻 = 𝑀 + (1 − ε)𝐸 (1) 

Thus, for the prescribed assumptions, the following system of linear equations (2) can be 

formulated to calculate the radiosities 𝐻𝑗 for each surface for given temperatures 𝑇𝑖 of all surfaces in 

dependence of the view factors 𝜑𝑖𝑗 [2]. In equation (2) 𝛿𝑖𝑗 denotes the Kronecker symbol and 𝜎 the 

Stefan-Boltzmann constant. 

∑[𝛿𝑖𝑗 − (1 − 𝜀𝑖)𝜑𝑖𝑗]𝐻𝑗 = 𝜀𝑖𝜎𝑇𝑖
4 

𝑛

𝑗=1

  (2) 

Once the system of linear equations (2) has been solved for 𝐻𝑗, the radiation net heat flows 𝑄̇𝑖 for 

each surface can be computed for given areas 𝐴𝑖 using equation (3). 

𝑄̇𝑖 = 𝐴𝑖[𝐻𝑖 − 𝐸𝑖] =
𝐴𝑖𝜀𝑖

1 − 𝜀𝑖
 (𝜎𝑇𝑖

4 − 𝐻𝑖)  (3) 

The main difficulty in applying the proposed surface-to-surface model is the computation of the 𝑛2 

view factors, where 𝑛 denotes the number of surfaces. Advantageous in the application of the model 

is, that for given view factors and temperatures the net heat flows are calculated by solving a system of 

linear equations, which can be computed easily applying robust and fast numerical algorithms.  

3.  Calculation of view factors using the Monte Carlo method 

The basis for the Monte Carlo method are random experiments, which are repeated very often, to 

obtain an estimation of the real solution. To calculate radiation view factors using the Monte Carlo 

method discrete particles of energy, so called photons, are randomly emitted from each surface within 

the switch cabinet. By a ray tracing algorithm the relative frequencies, how often the photons emitted 

from surface 𝑖 hit the surfaces 𝑗, are computed. These relative frequencies represent an estimation of 

the radiation view factors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Polar angle β and azimuth angle φ for a radiating surface 
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In order to obtain results, which converge to the real solution for an infinite number of emitted 

photons, the theoretically known distribution of radiant emission must be taken into account. Figure 1 

shows the geometric conditions of a radiating surface. The infinitesimal energy per unit time 𝑑𝜙 

emitted by the surface element 𝑑𝐴 in a definite direction in the half space can be calculated applying 

the following equation in spherical coordinates. 

𝑑𝜙 = 𝐼 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽 𝑑𝛽 𝑑𝜑 𝑑𝐴  (4) 

For a grey diffuse surface the total intensity 𝐼 is independent from the polar angle 𝛽 and the 

azimuth angle φ. For the Monte Carlo method equation (4) is interpreted in a statistical way and thus 

distribution functions both for the azimuth angle 𝜑 and for the polar angle 𝛽 can be determined. The 

following describes the procedure for the polar angle 𝛽. The probability density function for a photon 

in a definite polar angle direction 𝛽 can be calculated by normalization of the terms containing 𝛽 in 

equation (4) [3]. 

𝑓(𝛽) =
𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽

∫ 𝑐𝑜𝑠 𝛽 𝑠𝑖𝑛 𝛽 𝑑𝛽
𝜋/2 

0

= 2cos𝛽 sin𝛽 (5) 

Most computer programs have random number generators, which output uniformly distributed 

random numbers 𝑅 in the interval [0,1] [4]. Thus for the polar angle 𝛽 the following correlation 

between the random number 𝑅𝛽 and the probability density function (5) is valid. 

𝑅𝛽  = ∫ 2 cos𝛽 sin𝛽 𝑑𝛽

𝛽

0

= sin2 𝛽 (6) 

If equation (6) is solved for 𝛽, the quantile function of 𝑓(𝛽) results. 

𝛽 = arcsin√𝑅𝛽 (7) 

In an analogous way a relation between the azimuth angle 𝜑 and the uniformly distributed random 

number 𝑅𝜑 can be deduced.  

𝜑 = 2𝜋𝑅𝜑 (8) 

For a full description of the photon path besides the polar and azimuth angles the point of emission 

must be determined. In principle it is possible to formulate a relation between two more random 

numbers 𝑅𝑥 and 𝑅𝑦 and the related coordinates on the surface 𝑥 and 𝑦 as described in [3]. In the 

present work the procedure according to Hoff & Janni [5] is applied. The surfaces are divided into 

squares depending on a user defined grid spacing. The point of photon emission is determined using 

the midpoint of each squared subarea. The investigations of Vujicic et al. [6] showed that neither 

randomly chosen points of photon emission nor the midpoints of subareas for photon emission indicate 

any advantage. Besides the grid spacing 𝑛𝑔𝑠 the user has to define the number of emitted photons per 

squared subarea 𝑁𝑝.   

3.1.  Ray tracing algorithm 

For the present work only plane geometries are considered. Thus it is useful to introduce a global 

Cartesian coordinate system (𝑥, 𝑦, 𝑧) as shown in Figure 1. For the ray tracing algorithm an equation 

of a straight line vector 𝑔⃗ is defined for each emitted photon in the global coordinate system. 

𝑔⃗  = 𝑀⃗⃗⃗ + 𝑝 ∙ 𝑑 (9) 

In equation (9) 𝑝 represents a parameter and the vector 𝑀⃗⃗⃗ is the point of photon emission in the 

global Cartesian coordinate system. The direction vector 𝑑 depends on the polar angle 𝛽, the azimuth 
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angle 𝜑 and the orientation of the emitting surface, which is defined by a normal vector of unit length 

𝑛⃗⃗. The direction vector 𝑑 is calculated in dependence of the rotation matrix 𝑅̿ using equation (10). 

𝑑  = 𝑅̿ ∙ 𝑛⃗⃗ (10) 

with 

𝑅̿  = [

cos𝛽 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝜑 cos𝛽 𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝜑 𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝜑 cos𝛽

] (11) 

The next step is to check, which surface 𝑗∗ is hit by the photon emitted from surface 𝑖. For this 

purpose the intersection between the photon patch defined by the equation of a straight line (9) and 

any component surface is computed. Usually more than one intersection exists. The surface 𝑗∗, which 

has the intersection with the closest distance to the point of emission is the one, which is hit by the 

photon. The ray tracing algorithm is executed for the total number of emitted photons of the surface 

𝑁𝑝ℎ𝑜𝑡𝑜𝑛𝑠 defined in equation (12), whereas 𝑁𝑠𝑢𝑏 denotes the number of squared subareas of the 

surface. 

𝑁𝑝ℎ𝑜𝑡𝑜𝑛𝑠  = 𝑁𝑠𝑢𝑏 𝑁𝑝 (12) 

Finally the view factors from the emitting surface 𝑖 to any other surface 𝑗 can be computed using 

equation (13).   

𝜑𝑖,𝑗 =
𝑛𝑖𝑗

𝑁𝑝ℎ𝑜𝑡𝑜𝑛𝑠
 (13) 

𝑛𝑖𝑗 represents the number of photons emitted from surface 𝑖, that hit surface 𝑗. The described 

procedure is executed for every surface within the switch cabinet. 

3.2.  Quasi-Monte Carlo method 

Standard Monte Carlo methods use independent, randomly distributed numbers 𝑅𝜑 and 𝑅𝛽 for the ray 

tracing algorithm. One disadvantage of this method is the quite slow convergence rate of 𝑁𝑝ℎ𝑜𝑡𝑜𝑛𝑠
−1/2

, 

which is associated with the standard deviation of random methods [6]. One way to improve the 

convergence rate, is to use so called low discrepancy sequences for 𝑅𝜑 and 𝑅𝛽, which are more 

uniformly distributed than a random sequence.  

  
Figure 2. 𝑅𝛽 on 𝑅𝜑 generated by a Halton sequence (left) and pseudo-random sequence (right) 
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Thus they are called quasi-random sequences and consequently the Monte Carlo method becomes a 

quasi-Monte Carlo method. One example for a low discrepancy sequence is the Halton sequence [7]. 

In Figure 2 𝑅𝛽 is plotted over 𝑅𝜑. The points on the left-hand side are calculated using a Halton 

sequence, the points on the right-hand side are pseudo-random numbers generated using Matlab. The 

points of the Halton sequence are more uniformly and more smoothly distributed compared to the 

pseudo-random points. Therefore a faster convergence rate is expected for the quasi-Monte Carlo 

method than for the Monte Carlo method. 

4.  Test cases  and results 

Two test cases are examined to verify the radiation model. Test case 1 considers an empty switch 

cabinet, for which the view factors can be computed analytically. Figure 3 shows the configuration of 

test case 1 with associated dimensions and numbering of the thermal irradiating surfaces. Correlations 

for the analytical calculation of the view factors can be found in [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Test case 1: empty switch cabinet with numbering of wall surfaces 

 

The precise view factor matrix 𝜑̿ for the empty switch cabinet (see Figure 3) can be described as 

follows. 

 

𝜑̿𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 =

[
 
 
 
 
 

0 0.043 0.295   
0.043 0 0.295   
0.088 0.088 0

0.295 0.184 0.184
0.295 0.184 0.184
0.451 0.186 0.186

0.088 0.088 0.451   
0.091 0.091 0.312   
0.091 0.091 0.312   

0 0.186 0.186
0.312 0 0.193
0.312 0.193 0 ]

 
 
 
 
 

 (14) 

 

The results for view factor calculation applying the Monte Carlo method and the quasi-Monte 

Carlo method are compared with the analytical solution (see equation (14)). The grid spacing 𝑛𝑔𝑠 and 

the number of emitted photons per squared subarea 𝑁𝑝 were varied extensively when applying the 

different Monte Carlo methods. Using the Monte Carlo method for each variation of 𝑛𝑔𝑠 and 𝑁𝑝 five 

simulations were executed and arithmetically averaged, to reduce the statistical scattering of the 

results. In Figure 4 the maximum relative error 𝜎𝑚𝑎𝑥 between the analytical view factors and the 

corresponding view factors computed by Monte Carlo methods are shown for different values of 𝑛𝑔𝑠 
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and 𝑁𝑝. For most cases the maximum relative error for the quasi-Monte Carlo method is smaller than 

for the Monte Carlo method.  

 

 

Figure 4. Maximum relative error 𝜎𝑚𝑎𝑥 between analytical view factors and view factors 

calculated by Monte Carlo methods for different variations of grid spacing and emitted photons 

 

For test case 2 a switch cabinet is considered equipped with electrical components inside. The 

geometry of the cabinet corresponds to the sketch shown in Figure 3. Figure 5 shows the frame with 

fitted electrical devices, in which the outer walls are not depicted for reasons of clearness. For test case 

2 partly or completely obstructed surfaces exist within the switch cabinet. These obstructed parts of 

the surfaces do not participate in radiation heat transfer, thus obstructed areas must be subtracted from 

the real surfaces.   

Due to unavailable analytical results for the view factors of this geometry, the results of the Monte 

Carlo simulations are compared with numerical comparative data generated using the software 

FloTHERM [10]. This software is widely used for CFD simulations within the scope of cooling 

electrical components. The radiation heat transfer in FloTHERM is computed using a surface-to-

surface radiation model. The view factor calculation is also based on a Monte Carlo method.  

The comparative data consist of calculated net heat flows for both the walls and the components 

within the switch cabinet. For the calculations of the net heat flows the temperatures of the walls and 

the components are set to fixed values as shown in Figure 5. The emissivity of all walls is set to 

𝜀 = 0.6, the emissivities for the components are ranging from 0.1 to 0.95 depending on material and 
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surface condition. For test case 2 a grid spacing 𝑛𝑔𝑠 = 0.1 𝑚 and a number of emitted photons per 

subarea 𝑁𝑝 = 100 was used. The results of the net heat flows for the walls of the switch cabinet and 

the components including frame and electrical devices are shown in Table 1. 

 

 parameters walls frame and 

components 

T [K] 300 350 

𝜀 [−] 0.6 0.1 − 0.95 

Figure 5. Frame and electrical components inside of the switch cabinet 

considered for test case 2 

 

 

Table 1. Simulation results for test case 2 

Simulation method FloTHERM Monte Carlo quasi-Monte Carlo 

𝑄̇𝑤𝑎𝑙𝑙𝑠 [𝑊] 721.1 725.8 726.9 

𝑄̇𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 [𝑊] -722.1 -777.4 -774.9 

rel. error in energy 

conservation [%] 
0.1 7.1 6.6 

 

 

Table 1 shows, that in contrast to the FloTHERM results the energy conservation is not fulfilled 

very well for the Monte Carlo simulations. This is due to the fact, that for complicated geometries 

such as test case 2 a very large number of emitted photons and infinitely fine grid spacing is necessary, 

to get results for the view factors, which fulfill the reciprocity rule and with that the second law of 

thermodynamics [9]. To improve that, smoothing algorithms are applied, which lead to matrices, that 

are less sensitive to errors in the view factors [10].   

To determine the accuracy of the radiation model test case 1 is also computed using FloTHERM. 

The maximum relative error 𝜎𝑚𝑎𝑥 between the analytical view factors and view factors calculated by 

FloTHERM is about 3.0 %. 

5.  Conclusion 

A surface-to-surface radiation model for grey Lambert radiators is presented. The view factors, which 

are necessary for the application of the radiation model, are determined by means of a Monte Carlo 

method and a quasi-Monte Carlo method. The applicability of the Monte Carlo methods for the view 

factor calculation is verified based on two test cases. The comparison of analytical and calculated view 

factors for a not equipped, empty switch cabinet (test case 1) shows an excellent agreement. The 

smallest maximum error for both the Monte Carlo based view factor values and the quasi-Monte Carlo 

based view factor values is below 1 %. For most simulations the results obtained with the quasi-Monte 
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Carlo method are more accurate than the values obtained with the Monte Carlo method for a 

corresponding grid spacing and number of emitted photons. The application of the presented radiation 

model to determine the net heat flows in a switch cabinet equipped with electrical components (test 

case 2) shows relative errors in the energy conservation of about 7 % for both Monte Carlo methods. 

To improve the accuracy of the proposed radiation model, a smoothing algorithm has to be 

implemented, which also minimizes the deviation between the FloTHERM results and the results 

obtained by the presented Monte Carlo methods. 
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