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Abstract. This paper proposes a detailed analysis of bubble dynamics to describe pool boiling 

heat transfer in extreme wetting scenarios (superhydrophobic vs hydrophilic). A mechanistic 

approach, based on extensive post-processing allows quantifying the relative advantage of the 

superhydrophobic surfaces to endorse the onset of boiling at very low superheats (1-2K) vs 

their worse heat transfer performance associated to the swift formation of an insulating vapour 

film. Based on this analysis, a simple biphilic surface is created. The results suggest that for 

high heat fluxes, bubble dynamics is dominated by the emission of very small bubbles, which 

seems to affect the interaction mechanisms, precluding the emission of the large bubbles from 

the surface, thus compromising the good performance of the biphilic surfaces.   

1. Introduction 

Pool boiling heat transfer is a vital process in many industrial applications, thus being a hot research 

topic for many years. Several studies focus on heat transfer enhancement, mainly searching to increase 

the heat transfer coefficients and the Critical Heat Flux, by altering the surface properties, mainly 

surface topography (e.g. [1]) and/or chemistry (e.g. [2]). However, boiling is a complex phenomenon 

involving several interconnected mechanisms of mass, momentum and energy transfer between liquid-

solid-vapour phases, which is far to be completely understood [3-4]. Given that wettability is altered 

by both surface topography and chemistry, several of the aforementioned studies simultaneously alter 

surface topography and wettability in a non-systematic way, which precludes the identification of 

dominating effects. Recognizing the need to separate the effects of altering surface topography and 

chemistry, recent studies allowed identifying dominating roles of surface topography and wettability: 

for mild modifications of surface wettability, changing the surface topography mainly acts to promote 

potential nucleation sites [5], although care must be taken to keep the interaction mechanisms under 

control. Hence, the potential enhancement of pool boiling heat transfer by altering the surface 

topography can be overcome by the negative dominating effects of the interaction mechanisms, 

between nucleation sites and bubbles, which can actually promote the formation of large vapour 

blankets, strongly declining the heat transfer coefficients and endorsing the occurrence of the critical 

heat flux at lower wall superheat [6-7]. Under extreme wetting scenarios, surface topography plays a 

secondary role, being the onset of boiling triggered at very low surface superheat for boiling over 

superhydrophobic surfaces, which in turn have much lower Critical Heat Fluxes, when compared to 
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the hydrophilic surfaces [5, 8]. In turn, hydrophilic surfaces require a much larger degree of superheat 

to start the nucleation, but often allow obtaining higher heat transfer coefficients and Critical Heat 

Fluxes. Based on this trend, few authors promptly passed on to an “optimum” surface, considering an 

adequate superhydrophilic/superphydrophobic patterning of the surface – the so-called superbiphilic 

surfaces [9], mainly based on the evaluation of the heat transfer coefficients. However, the detailed 

characterization of bubble dynamics and its relation to the heat transfer processes is still scarcely 

reported in the literature, particularly for these extreme wetting regimes. This is an important step, 

given that, despite the scepticism of various authors in dealing with the mechanistic approaches, as 

earlier suggested by [10], important relations between bubble dynamics and heat transfer are 

recognized to be useful in the description of the heat transfer processes [3] and even to predict Critical 

Heat Fluxes [11]. Hence, the present paper addresses the characterization of the heat transfer processes 

under extreme wetting scenarios (hydrophilic vs superhydrophobic surfaces) showing the need to 

combine both characteristics in the so-called (super)biphilic surfaces. Heat transfer is quantitatively 

assessed based on the analysis of the boiling curves obtained for the various surfaces, being the results 

interpreted based on the particular bubble dynamics depicted for the various wetting regimes 

addressed here. It is worth mentioning that at this stage of the work, emphasis is taken in analysing the 

bubble dynamics and heat transfer processes, thus the biphilic patterns are not customized to provide 

the highest heat transfer coefficients, but instead to allow the description of the observed phenomena.    

 

2. Experimental arrangement and methodology 

2.1. Experimental arrangement 

The experimental rig is mainly composed by a boiling chamber, where the experiments are performed, 

a degassing system in which the fluid is pressurized and constantly heated and filling and evacuating 

circuits, being the latter at ambient pressure. The boiling chamber has approximately a cubic shape 

with 200mm side. The pressure and the temperature inside the boiling chamber are accurately 

controlled (the temperature is controlled with a precision of 1 K and for the pressure control the 

precision is 1.6 mbar). Heaters disposed inside and on the outer surfaces of the boiling chamber are 

controlled by a PID controller to assure that the liquid remains inside the chamber at saturation 

temperature. A type K thermocouple records the saturation data of the liquid, while a second 

thermocouple (also type K), located 25mm above the heating surface is used for PID control. The 

pressure is controlled by means of two electronic valves, which are actuated based on the measures 

given by a pressure transducer (OMEGA DYNE Inc.) inside the pool, using a home-made software 

based loop control. This control system reacts to pressure variations in the order of 5mbar. The 

refilling and the entire measurement processes are automatically controlled by this routine. The 

temperatures are sampled using type K thermocouples. The signal is acquired and amplified by a 

National Instruments DAQ board plus a BNC2120. The acquisition frequency is 100Hz. The entire 

heating block of the pool boiling test section is isolated with Teflon, from the outside and the pool 

boiling chamber is isolated with rubber. The heating block, which heats and accommodates the 

different surfaces, comprises a copper cylinder with a diameter of 20mm, inside which a cartridge 

heater (up to 315W) is placed. The surfaces with dimensions 62x62x1mm3are positioned on the 

heating block using a custom made system with bolts and springs, to assure the perfect thermal 

contact. The bolts contacting the surfaces are made from PEEK (polyether ether ketone) to minimize 

heat that is dissipated from the surface to the bolts. The heat flux is measured using a thin heat flux 

sensor (Captec Enterprise ®, with a sensitivity of 2.21mV/(W/m2)) custom made to fit perfectly to the 

heating block. A more detailed description of the experimental rig is provided in [8].  

2.2. Methodology 

The test surfaces are characterized by their topography and wettability, being the later quantified based 

on the quasi-static advancing θadv and receding angles θrec, together with the contact angle hysteresis= 

θadv - θrec. Afterwards, pool boiling curves are constructed for each test surface, which are obtained by 
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slowly imposing the heat flux in small increasing power steps. For each power step, bubble dynamics 

and nucleation mechanisms are also characterized based on high-speed visualization, using a high-

speed camera (Phantom v4.2 from Vision Research Inc.). Quantitative information regarding bubble 

dynamics is further obtained by image post-processing procedures. The working fluid used is degassed 

distilled water. The relevant thermo-physical properties are summarized in table 1. 

 

Table 1. Thermo-physical properties of water, taken at saturation at 

1.013x105 Pa. 

Property Value 

Saturation temperature Tsat (°C) 100 

Liquid density ρl (kg/m3) 957.8 

Vapor density ρv (kg/m3) 0.5956 

Dynamic viscosity of the liquid µl (mN m/s2) 0.279 

Specific heat cpl (J/kgK) 4217 

Thermal conductivity kl (W/mK) 0.68 

Latent heat of evaporation hfg (kJ/kg) 2257 

Liquid surface tension σ (N/m)x10-3 58 

2.2.1. Preparation and characterization of the surfaces 

Stainless steel surfaces are prepared to have different topographic and wetting properties, namely to be 

hydrophilic or superhydrophobic. The superhydrophobic surfaces are obtained at the expense of a 

chemical coating (a commercial compound called Glaco Mirror Coat Zero, from Soft99 Co, which is 

mainly a perfluoroalkyltrichlorosilane combined with perfluoropolyether carboxylic acid and a 

fluorinated solvent). All the surfaces are first cleaned, according to the following main steps: a) 30 min 

in an ultrasonic bath in water at 40oC, b) drying with compressed air and c) 30 min in an ultrasonic 

bath in acetone at 40oC. Then the coating is applied as in [5]. The aforementioned cleaning procedure 

must be repeated for each surface and for all the boiling curves. A similar procedure is followed to 

produce the biphilic surfaces, which are mainly composed by square patterns of hydrophilic and 

superhydrophobic regions. The squares are 10mm2.  

The homogeneity of surface topography and morphology is checked by Laser Scanning Confocal 

Microscopy (Leica SP8 Confocal Microscope) using the reflection mode. Then, the stochastic 

roughness profiles are measured using a Dektak 3 profile meter (Veeco) with a vertical resolution of 

20nm. These profiles are further processed to obtain the mean roughness (determined according to 

standard BS1134) and the mean peak-to-valley roughness (determined following standard DIN4768). 

Average representative values of Ra and Rz are taken from 10 measurements distributed along the 

entire surface. 

The contact angles are measured at room temperature (20oC), using an optical tensiometer (TETA 

from Attention). The angles are evaluated from the images taken within the tensiometer, using a 

camera adapted to a microscope. The images (with resolution of 15.6 μm/pixel, for the optical 

configuration used here) are post-processed by a drop detection algorithm based on Young-Laplace 

equation (One Attention software). The surfaces are characterized as hydrophilic (apparent quasi-static 

advancing angles lower than 90º) or superhydrophobic (apparent quasi-static advancing angles higher 

than 150º and hysteresis lower than 10º, following the criteria established in [12]. Table 2 depicts the 

main characteristics of the categories of surfaces defined for the present study. The contact angles 

were quite reproducible. The values presented here are taken as an average of 3 representative 

measurements distributed along the surface. Deviations in Ra were admitted around 10% within each 

category.  
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Table 2. Main characteristics of the test surfaces. 

Category 
Surface 

material 
Ra [μm] Rz [μm] θadv [o] θrec [o] Hysteresis [o] 

Hydrophilic Stainless steel 0.06 0.09 85±1 <20 >10 

Superhydrophobic 

Stainless steel 

coated with 

Glaco 

0.06 0.09 166±1 164 2 

2.2.2. Pool boiling curves 

The boiling curves are obtained under imposed heat flux conditions on the surface, with continuous 

control and monitoring of the surface temperature, liquid temperature and pressure inside the pool 

boiling chamber. The curves were obtained at 1 bar ± 10mbar for each surface by varying the imposed 

heat flux in steps. Each curve is averaged from 4 experiments. The uncertainty in temperature 

measurements is ±1K. The maximum uncertainty in the heat flux measurements is 3.3%. The detailed 

analysis of the measurement errors and uncertainties is presented in [8]. 

2.2.3. Bubble dynamics 

The characterization of the nucleation mechanisms and bubble dynamics is based on the measurement 

of several quantities obtained from high-speed visualization and image post-processing. The images 

are recorded with a frame rate of 2200fps and a resolution of 512x512 pixel2. For the optical 

configuration used here, the spatial resolution is 31.85 μm/pixel. A home-made code developed in 

MATLAB enables determining the temporal evolution of the bubble diameter (until detachment), 

bubble contact angle, velocity of the bubble centroid, velocity of the contact line and bubble departure 

frequency. The temporal evolution of bubble growth is measured for each test condition, from the 

entire bubble growth period until detachment. Then, averaged values are taken, for the instant of 

bubble detachment, for various detachment events. The maximum relative error when determining the 

bubble parameters is 10%, as exhaustively analyzed in [6-8]. 

 

3. Results and discussion 

3.1. Heat transfer and bubble dynamics under extreme wetting scenarios (hydrophilic vs 

superhydrophobic surfaces)  

Changing the wettability within extreme scenarios leads to significant differences in bubble dynamics, 

covering various phenomena which occur at different temporal and spatial scales. Hence, for water 

boiling on the hydrophilic surfaces, at low heat fluxes, corresponding to a wall superheat of 21K, the 

nucleation sites are sparsely located within the heated area (Φ20mm) and very few sites are active. 

Bubble size remains almost constant, while the emission frequency shows a general decreasing trend. 

At higher heat fluxes, the bubbles merge into large mushroom shaped vapour slugs and fluid motion 

becomes chaotic. This behavior contrasts with the boiling process observed on the superhydrophobic 

surfaces: even at superheat values of 1-2K, an immediate coalescence of bubbles in the near surface 

region occurs, generating an insulating vapor layer, from which a single big bubble starts to grow and 

depart from the surface. This behavior is in agreement with the results recently reported by [5]. This 

boiling morphology remains mostly unchanged at higher imposed heat fluxes, except for an increase 

of the bubble size and emission frequency. The detailed visualization of the morphology described 

above is depicted in [8]. The insulating vapor layer, together with the particular bubble dynamics 

discussed in the previous paragraphs can also be roughly evaluated considering the heat transfer 

mechanisms. In fact considering the mechanistic approach of the RPI model [10], the heat flux 

removed from the surface can be taken as a sum of three main contributions: the heat transferred by 

natural convection q”
nat conv, the latent heat removed by liquid vaporization during bubbles formation 

q”
vap and the heat removed by quenching q”

q, i.e. by the disruption of the thermal boundary layer as the 
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bubbles detach from the surface, followed by the surface re-wetting by the liquid. These terms can be 

estimated as: 
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Here, A is the area of the heater, NT is the total number of active nucleation sites, twn is the waiting time 

and l=kl/plCpl is the liquid thermal diffusivity. hnatconv can be estimated considering a typical 

correlation for natural convection on a horizontal plate (e.g. McAdams correlation, as suggested by 

[13]). Average values of the bubble dynamic parameters, such as the departure diameter and frequency 

can be provided by intensive image analysis, whose procedures and associated errors are summarized 

in section 2. While the relative weight of the heat removed by natural convection is typically lower 

than 30%, the terms associated to bubble vaporization and quenching are dominant [13]. For 

illustrative purposes one can estimate the term associated to the vaporization of the bubbles q”
vap 

following eq. (2), for the particular conditions summarized in table 3: 

 

Table 3. Bubble dynamics parameters for vaporization rate analysis. 

Surface 
Wall 

superheat (K) 

q’’measured 

(W/cm2) 

 

Bubble 

departure 

diameter Db 

(mm) 

Bubble 

departure 

frequency fb 

(Hz) 

Active 

nucleation 

sites 

 Hydrophilic 27 4.88 3.25 15.21 21 

Superhydrophobic 32 1.1 9.17 7.75 1 

 

For these conditions, the vaporization rate is 3.51x10-3g/s for the hydrophilic surface and 1.86x10-3g/s 

for the superhydrophobic surface. There are, naturally, many issues in this estimation considering the 

equivalent conditions for the evaluation of the vaporization rate, given the subjective nature of 

accounting average parameters for multiple nucleation sites, as occurs for the case of the hydrophilic 

surface. So this analysis mostly deserves a qualitative interpretation. However, for similar 

superheating conditions these results allow identifying trends. Hence, the vaporization rate is much 

lower for the superhydrophobic surface, as the insulating vapor layer will preclude the heat transfer 

from the surface to the liquid, thus limiting the vaporization rate. On the other hand, the fact that the 

large bubble stays attached to the surface for longer periods of time, significantly reduces the bubble 

emission frequency for the superhydrophobic surface, further contributing to the lower value of the 

vaporization rate obtained.   

The estimation of the value of the heat flux removed by vaporization for the hydrophilic surface as 

given by eq. (2) is almost half of the total amount of the heat flux that was measured by the sensor 

(measured depicted in table 3). This can be related to the strong weight of the term associated to the heat 

removed by the quenching mechanism. The current experimental conditions do now allow a reliable 

estimation of the waiting time and consequently of this term, as given by eq. (3). Nevertheless, this 

difference is in agreement with the estimations of [13], who evaluate the quenching term to be at least 

of the same magnitude of the q”
vap.. For the superhydrophobic surface instead, the presence of the 
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vapor layer precludes the occurrence of quenching, so following the same reasoning, the heat flux 

removed by vaporization is very close to the measured one.  

Based on these arguments, the heat flux removed from each of these surfaces, as a function of the wall 

superheat should follow the trend depicted in figure 1. 

 
Figure 1. Vaporization rates for hydrophilic and superhydrophobic surfaces as a function of wall 

superheat. 

 

From the results depicted in this figure and supported by the discussion performed up to now, the 

superhydrophobic surface starts to vaporize liquid at a much lower wall superheat, when for the 

hydrophilic surface the heat is only transferred by natural convection. Hence, for lower surface 

superheat values, one may argue that higher heat flux is removed from the superhydrophobic surface, 

for similar superheat values, when compared to the hydrophilic one. This should be further confirmed 

by the experimental results, refining the measurements, to try capturing the boiling incipience point, 

which was not possible for the accuracy available in the present set-up.  

As the wall superheat increases and the insulating vapor layer is generated over the superhydrophobic 

surface, the heat that is transferred from the surface to the liquid is strongly limited, so the heat flux 

removed for the same wall superheat becomes much lower, when compared to that obtained for the 

hydrophilic surface.  

3.2. Characterization of biphilic surfaces 

Considering the differences between wetting scenarios analyzed in the previous paragraphs, one may 

try to take advantage of the particular features of each scenario aiming at optimizing the boiling 

phenomena and the heat flux removed. For instance, as aforementioned, the minimum energy barrier 

for the onset of boiling is easily transposed for superhydrophobic surfaces [4], but then the force 

balance retains the bubbles attached to the surface, leading to coalescence and formation of a film 

from which the large single bubble departs, which constrains the heat transfer mechanisms, as 

quantified in the previous paragraphs. Hence, the resulting boiling curve, as depicted in figure 3 

confirms that the onset of boiling occurs during the first power step, at about 1-2K of wall superheat. 

Afterwards, the heat flux increases almost linearly with surface superheating, with much lower slope 

than that of the hydrophilic surface. This is the so-called “quasi-Leidenfrost” phenomenon, identified 

in [5] and later confirmed in [8]. Combining the two wetting regimes into a biphilic surface may 

actually increase the boiling heat transfer, as proposed for instance by [9]. In fact, during preliminary 

experiments performed in the present work, there was a coating failure which led to the appearance of 

hydrophilic spots on a superhydrophobic surface, which in turn led to a significant increase of the heat 

flux removed, as depicted in figure 2. This result is in agreement with those reported in [9], although it 

is not perfectly clear which were the processes behind this significant enhancement in the heat 

transfer. The analysis performed up to now suggests a vital role of bubble dynamics on the enhanced 

heat transfer obtained with the biphilic surfaces. To infer on this, a very simple biphilic surface was 

created with a pattern of 10mm side squares varying between superhydrophobic and hydrophilic 
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regions and experiments were performed to obtain the respective boiling curve and high-speed 

visualization of the boiling phenomena. 
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a) Wall superheat: 7.5K b) Wall superheat: 12.5K 

c) Wall superheat: 20K d) Wall superheat: 35K 

 

Figure 2. Boiling curves evidencing a “biphilic 

like” behaviour (with coating failure). 

 Figure 3. Bubble dynamics on a biphilic 

surface. 

 

The onset of boiling was achieved, for this biphilic surface at about 7.5K wall superheat (figure 3a), 

which is in between the onset of boiling wall superheat for the superhydrophobic surface – ≈2 K – and 

for the hydrophilic one – ≈14 K. At this initial temperature, there is very little bubble emission, 

although the boiling morphology already depicts hybrid characteristics between hydrophilic and 

superhydrophobic regimes. Hence, large bubbles stay attached to the surface, mostly at the 

superhydrophobic regions, but then random releases of very small bubbles can be observed over the 

entire surface, as illustrated in figure 4a. As the wall superheat increases up to 12.5K (figure 3b), the 

attached larger bubbles start to be released from the surface. Simultaneously, the emission of the very 

small bubbles is increased. However, further augmenting the wall superheat, the emission of the small 

bubbles increases steeply, which in turn reduces the emission of the larger bubbles that stay again 

attached to the surface (figure 3c). This dominance of the small bubble emission which is very clear in 

figure 3d, may be related to interaction mechanisms, although additional research is now required. 

This qualitative description of bubble dynamics for the biphilic surface is quantitatively represented in 

figure 4.  

 

 

 

Figure 4. Bubble dynamics for the biphilic 

patterned surface. 

 Figure 5. Boiling curves for water on all the 

surfaces tested in this work. 

 

It is worth mentioning that the larger bubbles generated on the biphilic surface are still smaller than 

those observed on the hydrophilic one, which contributes to the overall higher heat flux that is 

removed from the biphilic surface at low wall superheats, as shown in figure 5. Nevertheless, it is clear 

from figure 5 that, even with earlier point of boiling incipience, there is a significant reduction of the 

heat flux at higher superheat for the biphilic surface when compared with the hydrophilic one, which 

can be probably related to the particular bubble dynamics observed: the increased emission of very 
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small bubbles may not be enough to overcome the reduced heat transfer which occur when the large 

bubbles remain attached on the surface (which is in agreement with the analysis performed in section 

3.1). However, this biphilic surface was created for visualization purposes alone, so the biphilic 

patterns must be optimized to produce effective surfaces with improved heat transfer performance.  

 
4. Final remarks 

The present paper addresses the description of the pool boiling heat transfer mechanisms, based on the 

detailed analysis of bubble dynamics for water on surfaces with extreme wetting scenarios 

(superhydrophobic vs hydrophilic regimes). The superhydrophobic surfaces created here evidence a 

peculiar bubble dynamics behavior which endorses the onset of boiling at very low superheats (1-2K), 

but then a large insulating vapor film covers the entire surface, leading to the emission of single large 

bubbles. A mechanistic approach, making use of experimental data obtained by visualization and 

extensive post-processing analysis allows quantifying the strong constrain in the heat transfer from the 

surface to the liquid due to this peculiar bubble dynamics. Based on this analysis, a simple biphilic 

surface is created with large square patterns of superhydrophobic/hydrophilic regions. The results, 

comprising boiling curves and bubble dynamics are qualitatively in agreement with the few studies 

reported in the literature on the development of biphilic surfaces. Hence, the onset of boiling in these 

surfaces is observed for wall superheat values located between those obtained on hydrophilic and 

superhydrophobic surfaces, respectively, which is in agreement with the bubble dynamic 

characteristics evaluated in the present work. However, care must be taken for high heat fluxes, as 

bubble dynamics is dominated by the emission of very small bubbles, which despite being potentially 

beneficial for the heat transfer, seems to affect interaction mechanisms, precluding the emission of the 

large bubbles from the surface, thus compromising the good performance of the biphilic surfaces.    
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