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Abstract. A two dimensional front-tracking method is developed in order to model dendritic 

growth during solidification processes of pure substances. The method uses a sequential set of 

moving marker points to describe and track the liquid-solid interface which evolves over a 

fixed background mesh describing the whole medium. The code behaviour is first checked by a 

simple stable case of solidification to provide homogeneous velocity at the interface. Then, test 

examples of unstable solidification cases considering different modes of anisotropy are 

performed. Finally, interface evolution, with primary and secondary branches, is described, 

showing the ability of the code to study realistic dendritic growth characteristics. 
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1. Introduction 

Solidification processes are involved in many industrial applications, mainly in metallurgy and 

thermal latent heat storage fields. In each application, solidified materials properties strongly depend 

on the dynamics of solidification. However, solidification can be either stable or unstable. Hence, in 

several circumstances, some materials may remain in their liquid states, even below the solid-liquid 

equilibrium temperature. The solidification, in this case, is thermodynamically unstable because 

supercooled liquid appears. Once the solid is nucleated through the supercooled liquid, after sufficient 

cooling for example, the solidification may involve a complex interplay of many physical effects. 

Many microstructures patterns may be produced depending mainly on the degree of supercooling; the 

difference between the equilibrium temperature and liquid temperature (∆𝑇 = 𝑇𝑚 − 𝑇∞). When the 

supercooling degree is large enough, dendritic microstructure is commonly observed. That is due to 

the competition between the stabilizing effects at the solidification interface and the destabilizing 

effect of the supercooling. These stabilizing effects include mainly surface tension and kinetic 

mobility. 

Understanding the mechanisms which result dendritic structures has been the objective of much 

research over the last decades. Many in-situ visualization studies were carried out for this purpose. 

R.R. Gilpin [1] has studied the dendritic growth in supercooled water in pipes. Water temperature at 

the nucleation instant was -3°C. He observed ice dendritic growth that evolved quickly from the 

nucleation center until the cross-section has been blocked. At the end of this phase the temperature of 

the remaining water in the pipe has returned to the equilibrium temperature i.e. 0°C. After that, no 

more dendritic ice growth has occurred, but an annulus of solid ice then began to grow slowly from 

the inside wall of the pipe toward the centre. Tirmizi and Gill [2] made some quantitative 
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measurements about ice crystals growth in pure water. The structures which were photographed 

changed sequentially from disks, to perturbed disks, to disk-dendrites, to partially developed dendrites, 

and finally to fully developed dendrites. Recently, Braga and Milon [3] have showed that dendritic 

growth appears only in supercooled liquid at the start of nucleation. 

Numerically speaking, dendritic growth represents a pattern formation phenomenon, which in recent 

years has become a deeply researched subject in non-linear dynamics field. The principal difficulty 

while dealing with dendritic growth problem lies in the fact that the solidification interface constitutes 

both one of problem unknowns and one of the boundary conditions. Such problem is called a “moving 

boundary problem”. Therefore, specific methods are required. These methods can be split according to 

the way in which they handle the moving boundary interface. The first class consists of keeping 

explicitly the data of the interfacial position using independent deforming grid that evolves with the 

solid-liquid interface. This front tracking method has been used by Juric and Tryggvason [4], for 

example. They developed a two dimensional method to model the dendritic solidification. The method 

was coupled with immersed boundary technique to distribute the heat sources at the interface over grid 

points nearest the interface during solidification. They produced some experimentally observed 

complex dendritic structures such as tip-splitting and side branching. Later, the method has been 

extended in order to include the convection effect [5]. 

From the other hand, some approaches have been also developed to model the dendritic growth. They 

track the interface by a supplementary parameter, usually varying from zero to unity. The main order 

parameter methods that are used for dendritic solidification problems are the level-set and phase-field 

methods. For the level-set method, the interface is represented by the zero value of the level-set 

function which is defined in the whole system. This method has been used by Chen et al. [6] and 

Gibou et al. [7], for example. The phase-field method, which has been used by Karma’s team [8,9], for 

example, uses the phase-field variable which defines the physical state (liquid or solid) of a grid cell. 

The produced results showed that both of these methods are efficient to deal with the dendritic 

solidification problems.  

Despite the large volume of literature dealing with dendritic growth and that the main basic principles 

are well understood, several questions remain without clear answers. For instance, what are the 

involved effects that make the dendrites choose their shapes?  

In this context, the purpose of our work is to describe numerically, using front-tracking method, 

liquid-solid interface evolution, showing realistic phenomena, in terms of anisotropies and thermal 

liquid field effects during solidification process of pure substances. This paper focuses on the 

presentation of the solving procedure and its preliminary verification on reference cases. After a brief 

statement of the objectives and rationale behind the paper, the introduction provides a concise 

literature review. Then, sections 2 and 3 briefly present, respectively, the mathematical formulation of 

the problem and some numerical details. Section 4 discusses results while section 5 gives some 

concluding remarks. 

2. Mathematical formulation

The present study deals with the idealized situation of dendritic solidification of pure substances, for 

which natural convection in the liquid is neglected. A horizontal two-dimensional mathematical model 

is considered in order to produce results that could be compared to the experimental results obtained 

with the experimental bench dedicated to this project1. The discontinuity of heat conductivity and heat 

capacity between solid and liquid phases is taken into account. The mass densities of liquid and solid 

phases are assumed to be equal and constant. Consequently, the mathematical model first involves the 

heat diffusion equation in both liquid and solid regions: 

𝜌𝑐𝑠
𝜕(𝑇)

𝜕𝑡
= 𝛻⃗ ∙ (𝑘𝑠𝛻⃗ 𝑇)       solid region (1) 

𝜌𝑐𝑙
𝜕(𝑇)

𝜕𝑡
= 𝛻⃗ ∙ (𝑘𝑙𝛻⃗ 𝑇)       liquid region (2) 

1 This device is still under construction, and is designed with small enough thickness along the ground-gravity 

axis to prevent movement in the third dimension. 
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where 𝜌 is both liquid and solid density, 𝑐 is the specific heat, and 𝑘 is the thermal conductivity. 𝑠 and 

𝑙 refer to the solid and liquid phases, respectively. 

Second, the model involves the energy balance equation at the solid-liquid interface: 

𝜌𝐿(𝑇𝑓)𝑣𝑛 = (𝑘𝑠𝛻⃗ 𝑇𝑠 − 𝑘𝑙𝛻⃗ 𝑇𝑙) ∙ 𝑛⃗ (3) 

where 𝑣𝑛 is the normal velocity of the interface, 𝐿(𝑇𝑓) determines the latent heat in terms of the

interface temperature (𝑇𝑓) and is calculated by the following expression:

𝐿(𝑇𝑓) = 𝐿 + (𝑐𝑙 − 𝑐𝑠)(𝑇𝑓 − 𝑇𝑚) (4) 

Finally, the model is completed with the temperature at the interface which can be evaluated by the 

following Gibbs-Thomson condition:  

𝑇𝑓 = 𝑇𝑚 − 𝑇𝑚

𝛾(𝜃)𝜅

𝜌𝐿
−

𝑣𝑛

𝜐(𝜃)
− 𝑇𝑚

(𝑐𝑙 − 𝑐𝑠)

𝐿
(𝑇𝑓 𝑙𝑛 (

𝑇𝑓

𝑇𝑚
) + 𝑇𝑚 − 𝑇𝑓) (5) 

where 𝜅 is twice of interface mean local curvature, 𝛾(𝜃) is the anisotropic surface tension, and 𝜐(𝜃) 
represents the anisotropic kinetic mobility. 𝜃 is the angle between the normal vector at the interface 

and an arbitrary reference axis. 

The Gibbs-Thomson condition (eq. (5)) expresses the local thermodynamics equilibrium condition of 

the moving interface, taking into account the curvature as well as the anisotropies effects of surface 

tension and kinetic mobility. 

3. Numerical method

The front-tracking method is chosen for this study. The main idea behind this method is that it resolves 

separately the energy equation in both liquid and solid phases, and the interface problem. Thus, it 

permits dividing the whole domain in three sub-domains: the liquid region, the solid region, and the 

moving interface in between. Secondly, this method uses lower dimension completely independent 

mesh to track the interface. Generally, this mesh is thinner than the global one used for the whole 

domain (solid and liquid regions). Therefore, the interface location can be tracked with precision 

independently of the global mesh. Finally, parallelization is possible with this method. 

A finite volume method is implemented to discretize the heat partial differential equations in both 

liquid and solid phases, Eqs. (1) and (2). Herein, a square regular mesh is used for dividing solid and 

liquid regions in elementary volumes of unit thickness. Moreover, an explicit first-order forward Euler 

time integration method is used. Then, for each time step, temperature fields of solid and liquid cells 

are updated in terms of conductive heat flows from the other surrounding cells, as well as the latent 

heat released by the interface due to the solidification process. 

The interface is represented by a moving set of marker points connected in a sequential order. Eqs (3) 

and (5) are then solved at each point of the moving mesh in order to evaluate its temperature and 

normal velocity. The temperature, on the one hand, is used to calculate the interface latent heat flow 

evacuated through the liquid and solid regions. On the other hand, the normal velocity is used to 

calculate the elementary displacement of each interface marker point. As the interface deforms greatly, 

the addition and suppression of marker points are required to maintain a good resolution for interface 

shape; a minimum and maximum distances between two adjacent points must then be defined. The 

maximum limit distance is generally calculated in terms of regular fixed grid cells dimensions so that 

one grid cell can contain several marker points. 

Each grid cell is represented mainly by its volume, centroid, and side (i.e. exchange) surfaces. At each 

time step, information must be passed between the moving representation of the interface and the 

stationary grid of the whole domain. That is done by a geometrical step which calculate the 

geometrical properties of all the grid cells (liquid and solid phases), taking into account the position of 

the interface. For this purpose, the numerical algorithm must be able to distinguish between a grid cell 

in which the interface takes place and another in which the interface does not. Figure 1 presents, for 

instance, four adjacent grid cells. One of these grid cells (on the right bottom) does not contain an 

interface, and the three others do. 
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When dealing with a single-phase grid cell, through which interface does not pass (figure 1 – right 

bottom), all the geometrical properties can be deduced directly from the global thermal grid 

dimensions. On the other hand, the geometrical properties of grid cell into which an interface takes 

place (figure 1 – right top, left top, and left bottom), have to be properly evaluated. Both liquid (white) 

and solid (grey) coexist in such irregular grid cells. However, for each phase, all parameters which are 

needed for evaluating the temperature evolution are calculated. These parameters are volume, 

exchange side surfaces, interface length, and centroid location (black dots).  

Then, local curvature and normal vector direction are obtained by constructing the unique circle which 

connects a marker point with its two neighbours (see example in figure 1). By convention, the normal 

vector is always considered to be oriented towards the liquid phase. Finally, surface tension and the 

inverse of kinetic mobility anisotropies are respectively given by [4]: 

𝛾(𝜃) = 𝛾 {1 + 𝐴𝛾 [
8

3
𝑠𝑖𝑛4 (

1

2
𝑚𝛾(𝜃 − 𝜃𝛾)) − 1]} (6) 

1

𝜐(𝜃)
= (

1

𝜐
) {1 + 𝐴𝜐 [

8

3
𝑠𝑖𝑛4 (

1

2
𝑚𝜐(𝜃 − 𝜃𝜐)) − 1]} (7) 

where 𝛾 is the isotropic surface tension, 𝜐 is the isotropic kinetic mobility, 𝐴𝛾 and 𝐴𝜐 determine the

magnitude of anisotropy of the surface tension and the kinetic mobility, respectively. 𝑚𝛾 and 𝑚𝜐

determine the mode of symmetry of the crystal. 𝜃𝛾 and 𝜃𝜐 determine the angle of symmetry axis with

respect to a reference axis (horizontal axis is chosen). 

From an initial given interface shape and temperature fields of liquid and solid phases, the numerical 

algorithm proceeds iteratively through the following main steps: 

1. Updating the interface discretization: adding and deleting marker points.

2. Updating geometrical properties of the global grid cells: volume, centroid location, side

surfaces, and length of the interface passing through. 

3. Calculation of interface marker points characteristics: surface tension, kinetic mobility,

curvature, normal vector, local temperature gradients. 

4. Resolution of the interface problem, eqs (3-5): temperature and normal velocities.

5. Updating the temperature fields of the liquid and solid phases (eqs (2) and (1), respectively).

6. Moving the interface marker points.

Figure 1. Four adjacent grid cells: 
(right bottom) without interface; 
(three others) with interface. The 
unique circle connecting three 
consecutive interface marker points 
to evaluate the curvature and the 
normal vector direction. 
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The time step is considered constant over the whole iterative procedure. It is initially calculated in 

terms of both interface average velocity and regular grid cells dimensions. The time step must be 

selected so that several time steps are needed for an interface marker point to pass through a grid cell, 

and such that the convergence is ensured. The numerical algorithm is written in C++ using an object-

oriented approach in order to simplify its future evolutions. 

4. Results

This section presents and discusses selected results to avoid making the paper overly lengthy. These 

results are obtained by the numerical method described in the previous section in two space 

dimensions. The evolution of the liquid-solid interface during the solidification process of a 

supercooled pure substance is described. The solidification is initiated by introducing a small solid 

seed of radius 𝑅 in the domain. Initially, solid temperature is assumed to be equal to the equilibrium 

fusion temperature 𝑇𝑚, and the domain contains a supercooled liquid at a homogeneous temperature

𝑇∞ < 𝑇𝑚. For each problem, the physical parameters are presented, numerical details follow, and the

result is then described and discussed. 

4.1. Stable solidification 

The numerical method must be able, first, to produce the circular symmetry test of the stable case of 

solidification, for which anisotropies effects are neglected. In such case, evolution of the interface is 

homogeneous and the developing structure retains its initial shape. Therefore, in order to check the 

code behaviour, a stable solidification case is studied. An initial solid circular seed (𝑅 = 1 µ𝑚) is 

introduced at the centre of the supercooling liquid (𝑇∞ = 𝑇𝑚 − 10 ). To neglect boundary conditions

effects on the interface evolution, the boundaries are assumed to be adiabatic. The following figure 

represents results of interface evolution in this case. For computation time purposes, a small domain of 

144 µm² is considered. 

In figure 2, with isotropic surface tension and kinetic mobility, the interface develops homogeneously 

retaining its initial shape. Indeed, at each time step, marker points have the same radius forming a 

circle for which radius increases with time. In this case, the growing interface temperature also 

maintains the equilibrium temperature. Thus, there is no heat transfer between the interface and the 

solid phase. These thermal conditions are similar to those of Stefan solidification problem. 

Consequently, the shape obtained here validates the numerical code, producing, for a stable case, 

homogeneous velocities of all interface marker points. 

4.2. Unstable solidification: symmetry and primary branches 

Unstable solidification may be produced assuming anisotropic surface tension and kinetic mobility, 

given by eqs. (6) and (7), respectively. In order to check the code behaviour and the numerical method 

implementation in this case, two different modes of anisotropy are considered. Under the same 

Figure 2. Evolution of the interface for stable  
solidification. Time interval between lines is 
0.05 ms. 
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geometrical and thermal conditions, figures 3 and 4 represent unstable liquid-solid interface evolution 

with four-fold (𝑚𝛾 = 𝑚𝜐 = 4) and six-fold (𝑚𝛾 = 𝑚𝜐 = 6) anisotropies, respectively. An initial solid

seed (𝑅 = 1 µ𝑚) is introduced at the centre of the supercooled liquid (∆𝑇 = 10 𝐾). To ensure a 

continuous evolution of the interface, a slightly smaller temperature is imposed on the domain 

boundaries (𝑇∞ − 2𝐾). A domain of 2500 µm² is considered for both computations.

In contrast to figure 2, these results represent non-homogeneous interface evolution. The growing 

interface does not have the memory of its initial shape, and, depending on the anisotropy mode, 

privileged growth directions appear. In figure 3, in which four-fold anisotropy is considered, the 

interface has grown in four particular directions according to x-axis (reference axis) depending on 

anisotropies expressions parameters. However, in figure 4, which considers ice-flake anisotropy mode 

(six-fold), six privileged growth directions have appeared. Both results show interface deformations 

from first stages of computation according to anisotropies modes. These primary branches and 

particular growth directions demonstrate the correctness of the numerical method implementation and 

that the code appropriately reacts when dealing with unstable cases of solidification. The results 

showing primary branches symmetry partially validate the ability of the numerical code to deal with 

dendritic growth. However, it is essential to test the interface behaviour in somewhat more advanced 

stages to provide secondary branches. Secondary branches or larger order of branches are due to the 

interaction between thermal and anisotropies effects. Consequently, producing these branches shows 

that the numerical code is able to produce the first stages of realistic dendritic growth. 

4.3. Unstable solidification: secondary branches 

Due to symmetry and time computation purposes, in this problem, the computational domain is 

restricted to the positive quadrant. Further, a symmetry axis is imposed along the diagonal-axis of the 

domain to benefit from maximum possible space that could be given to the growing interface. Figure 5 

thus presents an advanced interface evolution growing from same solid seed radius (1 µm), but in 

supercooled liquid with ∆𝑇 = 8 𝐾. Slightly smaller temperature is imposed on the right and top 

domain boundaries (𝑇∞ − 1𝐾), and adiabatic conditions are assumed elsewhere. A domain of 2500

µm² is considered. Figures 6, 7, and 8 represent the liquid phase temperature fields at different stages 

of computation. 

Figure 3. Evolution of the interface with four-fold 
anisotropy. 𝑚𝛾 = 𝑚𝜐 = 4. 𝜃𝛾 = 𝜃𝜐 = 0. Time interval is 

0.5 ms. 

Figure 4. Evolution of the interface with six-fold 

anisotropy. 𝑚𝛾 = 𝑚𝜐 = 6. 𝜃𝛾 = 𝜃𝜐 =
𝜋

6
. Time interval

is 0.5 ms. 
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In figure 5, realistic dendritic growth behaviour can be clearly observed. From early computation 

stages (5, 10, and 15 ms), a large branch appears along the diagonal-axis depending on anisotropies 

surface tension and kinetic mobility expressions parameters (𝑚𝛾 = 𝑚𝜐 = 4 𝑎𝑛𝑑 𝜃𝛾 = 𝜃𝜐 =
𝜋

4
). In 

figure 6, the liquid thermal field shows that, at 10 ms the local thermal gradient at the interface in the 

normal vector direction is homogeneous. Therefore, one can deduce that thermal gradient has no effect 

on the interface evolution at these early stages, but only anisotropies effects govern the evolution of 

the interface to choose the diagonal-axis as privileged growth direction. Further, at 20 ms, three 

deformations appear, at the tip and on both sides of the interface. At this stage, in figure 7, the 

homogeneous thermal gradient with liquid phase near the interface begins to break, providing tip-

splitting and secondary branches at the interface sides. At 25 ms, figure 8 presents an increase in the 

liquid temperature in the vicinity of the cavities at the branch-tip and interface sides (shown in pale 

pink). Increase in temperature prevents thereafter interface growing toward regions involving this 

temperature, providing then realistic dendritic shapes at stages between 25 and 30 ms (figure 5). These 

realistic phenomena (tip-splitting and secondary branches) show the appropriate interaction between 

stabilizing and destabilizing effects at the interface for unstable case of solidification. They therefore 

validate the ability of the numerical code to provide realistic dendritic growth and to study its 

characteristics. 

Figure 6. Temperature field in liquid phase at 10 ms. Figure 5. Evolution of the interface in the positive 
quadrant with four-fold anisotropy. 𝑚𝛾 = 𝑚𝜐 = 4. 𝜃𝛾 =

𝜃𝜐 =
𝜋

4
. Time interval of bold interfaces is 5 ms.

Figure 7. Temperature field in liquid phase at 20 ms. Figure 8. Temperature field in liquid phase at 25 ms. 
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5. Conclusions

This paper deals with the solidification process of pure substances that is involved in several industrial 

applications. The interaction between thermal and anisotropies effects, which provides dendritic 

growth pattern, is described numerically in order to investigate what affects the dendrite growth 

directions, and what is the influence of the thermal behaviour on this growth. The study limits its 

scope to growth in a two-dimensional environment, free from natural convection. 

The mathematical model is based upon the heat diffusion equations in both phases, a heat balance at 

the solid-liquid interface, and the Gibbs-Thomson condition. The numerical method is based on the 

explicit front-tracking approach. It is embedded in a finite volume formulation in which an explicit 

first-order forward Euler time integration is used. The moving interface is represented by a moving set 

of maker points connected in a sequential order. 

The numerical code is first checked, by use a simple stable case of solidification, for which 

homogeneous velocities at the interface are produced. Then, two different anisotropies modes are 

performed in order to test the code behaviour to provide appropriate privileged directions and primary 

branches. Finally, an advanced unstable case of solidification is performed, for which the interface 

evolution is described. Results show that the code is able to deal with some particular cases of 

dendritic growth, providing realistic phenomena as tip-splitting and secondary branches.  

Upcoming works involve, in the one hand, quantitative validation of the numerical code, as well as, 

more advanced numerical results considering some particular cases of dendritic growth, and on the 

other hand, the design of a two-dimensional test bench in attempt to compare experimental 

visualisation to numerical results obtained with the proposed method. 
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