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Abstract. The paper presents results concerning flow boiling heat transfer in a vertical 

minichannel with a depth of 1.7 mm and a width of 16 mm. The element responsible for 

heating FC-72, which flowed laminarly in the minichannel, was a plate with an enhanced 
surface. Two types of surface textures were considered. Both were produced by vibration-

assisted laser machining. Infrared thermography was used to record changes in the temperature 

on the outer smooth side of the plate. Two-phase flow patterns were observed through a glass 

pane. The main aim of the study was to analyze how the two types of surface textures affect the 

heat transfer coefficient. A two-dimensional heat transfer approach was proposed to determine 

the local values of the heat transfer coefficient. The inverse problem for the heated wall was 

solved using a semi-analytical method based on the Trefftz functions. The results are presented 

as relationships between the heat transfer coefficient and the distance along the minichannel 

length and as boiling curves. The experimental data obtained for the two types of enhanced 

heated surfaces was compared with the results recorded for the smooth heated surface. The 

highest local values of the heat transfer coefficient were reported in the saturated boiling region 

for the plate with the type 1 texture produced by vibration-assisted laser machining. 

1. Introduction 
Heat transfer in small channels has been dealt with significant attention over the last few years, 

especially for application to for cooling compact devices. Due to the technological growth, methods 

allowing the intensification of the heat transfer are sought. Application of enhanced surfaces for 
cooling compact devices could allow additional intensification of heat transfer. The heat exchangers 

with small dimension channels enable meeting opposite requirements i.e. obtaining a potential large 

heat flux although the temperature difference between a heated surface and saturated liquid is small, in 
heat exchange systems of a small dimensions. 

Many researchers have been carried out study on flow boiling heat transfer and pressure drop in 

micro- and minichannels [1-13] over the last twenty years. There are a lot of papers focused on pool 

boiling heat transfer on modified heated surfaces [14-17]. In their earlier works [17-20] the authors 
studied flow boiling heat transfer in minichannels where the working fluid was heated by an enhanced 

surface produced by laser surface texturing or electromachining (spark erosion). The literature also 

includes works concerned with porous structures [21,22], micro-structures in flow boiling [23] and 
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pool boiling [24]. References [25,26] focus on the use of porous surfaces to enhance flow boiling heat 

transfer in minichannels. 

Among others, an increase in heat transfer enhancement resulting from producing micro- or mini-

recesses on the heated surface corresponds to the increase in the number of nucleation sites. The 
presence of the recesses also contributes to an increase in the surface-to-volume ratio [14,17,19,20]. In 

order to increase the heat transfer enhancement, various technological processes which modify heated 

surfaces by means of passive or active methods. The extensive research on passive methods shows that 
modifying the characteristics and structure of the surface results in higher energy-efficiency and 

material savings. The properties and structure of a heated surface can be modified using chemical, 

thermal, mechanical or combined mechanical and thermal processes. The thermal processes include 

laser surface texturing, electromachining (spark erosion), sintering, electric arc spraying or plasma 
spraying. Thermal processes, such as: laser surface texturing were used in for processing the surfaces 

[27-30]. In [31] a vibration-assisted laser surface texturing of metals as a passive method for heat 

transfer enhancement was described. An evaluation of the use of laser-vibration melting to increase 
the surface roughness of metal objects was discussed in [32]. This paper presents the results of flow 

boiling heat transfer in a minichannel with an enhanced plate surface obtained by the vibration-

assisted laser surface texturing. The main aim is to analyze the effects of the enhanced plate surface 
texture produced by vibration-assisted laser machining on the heat transfer coefficient in two boiling 

regions: the subcooled boiling region and the saturated boiling region. 

2. Experimental stand and methodology, calculation of the heat transfer coefficient 

2.1. Experimental stand 
The study was carried out for a flow boiling process by using the experimental setup shown in  

figure 1a. It consists of several systems: the main loop with working fluid (Fluorinert FC-72), the data 

and image acquisition system with and the lighting system, the supply and control system.  
The essential part of the main loop is a tested module with a minichannel (1). The main loop is also 

composed of: a gear pump (2), a compensating tank (3), a tube-type heat exchanger (4), a filter (5), a 

Coriolis mass flowmeter (6) and a deaerator (7). The data and image acquisition system designed to 

collect measurement data is made up of: an infrared camera E60 FLIR (15), a Canon EOS 550D 
digital SLR camera (16) and two data acquisition stations (DaqLab 2005 and MCC SC-1608G). The 

lighting system is high power LEDs (17) to light two phase flow. The accuracy of the IR camera was  

± 1 °C or ± 1% in the temperature range: 0 – 120 °C and ± 2 °C or ± 2 % outside the range 0 – 120 °C. 
The supply and control system consists of an inverter welder, a shunt, an ammeter and a voltmeter.  

In the tested module there is a vertical minichannel (8) with a single-sided enhanced heated plate 

surface (10). The minichannel has the dimensions: 1.7 mm (depth), 16 mm (width) and 180 mm 
(length). The heated element for FC-72 flowing in a minichannel is a Haynes-230 alloy plate (9), 

thickness of about 0.45 mm. In the experimental series, the plates in contact with the fluid in the 

channel had surfaces enhanced by vibration-assisted laser texturing. Two plates differing in texture 

were analyzed. In an additional series, a smooth plate was also used. Temperature of the heated plate 
on the outer side (the smooth surface not contacting fluid in the minichannel) was measured by 

infrared thermography, in the central, axially symmetric part of the channel. The plate was coated with 

black paint of emissivity about 0.83 [33,34]. The two-phase flow structures were observed through the 
glass pane (11) at the enhanced side of the plate being in contact with the fluid. At the inlet and outlet 

of the minichannel, pressure converters and K-type thermocouples were installed (12).  

The two types of surface texture generated by vibration-assisted laser texturing are shown in figure 
1b and c. They were produced at different parameters: one at a higher laser head speed of 5 m/min and 

a higher power of 1500 W (type 1 texture - figure 1b), and the other at a lower laser head speed of 2.5 

m/min and a lower power of 1 250 W (type 2 texture - figure 1c). One texture is clearer with cavities 

deeper and more widely spaced, whereas the other texture is less clear with more shallow cavities and 
overlapping tracks.  
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Figure 1. (a) Schematic diagram of the experimental setup, 1-test module with a minichannel;  

2-gear pump; 3-compensating tank; 4-heat exchanger, 5-filter, 6-mass flowmeter, 7-deaerator,  

8-minichannel, 9-heated plate, 10-enhanced surface of the plate, 11-glass pane, 12-thermocouple 
and pressure converter, 13-front cover, 14-channel body, 15-infrared camera; 16-digital SLR 

camera, 17-high power LEDs (400 W); (b,c) images of the foil surface produced by vibration-

assisted laser texturing: b) type 1 texture, c) type 2 texture.  

2.2. Experimental methodology 

Three experimental series were performed to study the laminar flow of FC-72 in a minichannel for 

three heated plates differing in surface texture. Two surfaces enhanced by vibration-assisted laser 
texturing and a smooth surface was tested at similar thermal and flow parameters. 

After the desired values of the pressure and flow rate were fixed, the electric power supplied to the 

heated plate was increased gradually to achieve an increase in the heat flux transferred to the fluid in 

the minichannel. It caused a change in the heat transfer between the plate surface and the working 
fluid from single phase convection to nucleate boiling. The process began with the onset of nucleate 

boiling and subcooled boiling. In the subcooled boiling region, the liquid was superheated at the 

interface with the plate and subcooled at the flow core. The saturated nucleate boiling occurred when 
the liquid reached its saturation temperature at the flow core. 

2.3. Calculation of the heat transfer coefficient 

The local heat transfer coefficients were calculated from: the equation (1) - for the subcooled boiling 

region or the equation (2) - for the saturated boiling region, as follows: 
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(2)                                         

where  − coefficient of thermal conductivity of the heated plate,  − plate thickness, T(x,y) − plate 

temperature, x − coordinate relating to the fluid flow direction,  y − coordinate relating to the 
thickness of the heated plate, Tf (x) – fluid temperature determined on the basis of the linear 

distribution of fluid temperature along the minichannel length, Tsat(x) – saturation temperature 

determined on the basis of the linear distribution of pressure along the minichannel length. 
The average uncertainties of the relative heat transfer coefficient for the minichannel were 36.5 % 

[34]. The plate temperature T  was determined by solving the inverse problem [35] of the heat transfer, 

described by Poisson’s equation: 

  
2

2

2

2

y

T

x

T










 
V

q

A

UI







Δ

 

for   yx,  
(3) 

where   ,0,0:, 2  yLxRyx  L
 
– length of the minichannel, qv

 
−  volumetric heat flux,  

I − current, U − voltage drop, A − surface area of the heated plate. The boundary conditions were 
shown in figure 2, where: P − number of measurements obtained using infrared thermography on the 

outer surface of heated plate, Tp − plate temperature measured by infrared thermography at the 

boundary y=0, qw,loss - heat loss to the surroundings, estimated as in [34] and  ,   defined as for 

equations (1) and (2). 

In domain , the temperature T  was approximated by means of the linear combination of Trefftz 
functions:  

       



N

i
ii

yxvayxuyxT
1

,,,  (4) 

where: u(x,y) - particular solution of equation (3),vi(x,y) - the Trefftz functions [36-39]. 

The unknown coefficients i 
were calculated by minimizing the appropriate functional. 

 

 

Figure 2. Boundary conditions for a two-dimensional approximation.  
 

3. Results 

The results are represented graphically as a relationship between the heat transfer coefficient and the 

distance from the minichannel inlet in figure 3 to compare the heat transfer on the enhanced plates 

with that on the smooth plate. Separate plots were generated for the subcooled boiling region  
(figure 3a) and the saturated boiling region (figure 3b), both refer to three different heat flux values 

(qw). The values of the local heat transfer coefficient calculated for the enhanced plates and the smooth 
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plate were marked as green points (type 1 texture), blue points (type 2 texture ) and red points  

(the smooth plate), respectively. 

In the subcooled boiling region, the heat transfer coefficient was relatively low. The local values of 

the heat transfer coefficient increased slightly with the distance from the minichannel inlet. At the 
highest heat flux supplied to the plate, the local values of the heat transfer coefficient were the lowest 

for the surface enhanced by type 2 texture and the highest for the type 1 texture (figure 3a). In the 

analyzed boiling region, the data obtained for the enhanced plates did not differ significantly from that 
reported for the smooth surface. In the saturated boiling region (figure 3b), the heat transfer coefficient 

was very high for all the heated plates, with values up to a hundred times greater than those obtained 

for the subcooled boiling region. In this boiling region, there no data was recorded for type 2 texture  

because of the large fluctuations in the temperature of the heated surface in relation to the saturation 
temperature. The results reveal that locally there was no saturated boiling region. This is the reason 

why the data shown refers only to the plate with enhanced surface (type 1 texture ) and the smooth 

plate. The lowest values of the coefficient were observed at the channel inlet and outlet. It was evident 
that heat transfer reported for the enhanced surface - type 1 texture - was more intensive than for the 

smooth surface in this boiling region. The presence of little cavities distributed over the whole surface 

of the heated element, is likely to have contributed to the formation of numerous nucleation sites. 
Reference [40] reports that when a bubble departs from an enhanced surface, the interface between the 

liquid and the vapour occurs in the subsurface capillaries, where it is unaffected by the cold 

temperature of the liquid above. As the subsurface capillaries are interconnected, the vapour produced 

within the subsurface structure at one site tends to activate other sites. The analysis of the data 
indicates that the use of the type 1 texture with a sparser spacing of artificial pores was very beneficial. 

The very close spacing between the artificial cavities constituting the type 2 texture was responsible 

for the large fluctuations in the temperature of the heated surface and the instability of boiling heat 
transfer in the saturated boiling region causing a considerable drop in heat transfer. 

 

Figure 3.  Heat transfer coefficient vs. the minichannel length, data for: (a) the subcooled boiling 

region, (b) the saturated boiling region; experimental parameters average mass flux of 
273 kg/(m2s), average inlet pressure of 125 kPa, average inlet liquid subcooling of 44 K. 

 

The boiling curves in figure 4 were plotted from the data collected during tests, which involved 
increasing the heat flux supplied to the heated plates. They showed the relationship between the heat 

flux qw and the difference in temperature Tp-Tf  (figures 4a and c) or Tp-Tsat (figures 4b and d). All the 

boiling curves in figure 4 were generated for two selected distances from the minichannel inlet: 0.06 m 
and 0.15 m. The curves were drawn for the two enhanced surfaces and the smooth one. The results 

obtained for the three surfaces were plotted as green points, blue points and red points to represent the 
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plate with the type 1 texture, the plate with the type 2 texture, and the smooth plate, respectively. The 

boiling curves showing the relationship between the heat flux and the difference in temperature Tp-Tf  

are similar in shape, although the curve for the type 1 texture shifts by 5 K towards the higher values 

of the difference in temperature Tp-Tf  in the region of the higher heat flux (figure 4c). These boiling 
curves show that there was a drop in temperature during the 'nucleation hysteresis' [18,41] at the onset 

of nucleate boiling (ONB). However, the boiling curves illustrating the heat flux versus the difference 

Tp-Tsat are not alike; the curve for the type 2 texture is particularly different; it differs from the other 
curves significantly and this results from the large fluctuations in temperature of the heated plate. 
 

 

Figure 4. Boiling curves generated for two distances from the minichannel inlet: (a) 0.06 m,  

(b) 0.15 m; experimental parameters as for figure 3. 

4. Conclusion 

The paper presents results concerning flow boiling heat transfer in a vertical minichannel with a depth 

of 1.7 mm and a width of 16 mm. The element responsible for heating FC-72, which flowed laminarly 
in the minichannel, was a plate with an enhanced surface. Two types of surface textures were 

considered. Both were produced by vibration-assisted laser machining. Infrared thermography was 

used to record changes in the temperature on the outer smooth side of the plate. Two-phase flow 

patterns were observed through a glass pane. The main aim of the study was to analyze how the two 
types of surface textures affect the heat transfer coefficient. A two-dimensional heat transfer approach 

was proposed to determine the local values of the heat transfer coefficient. The inverse problem for the 

heated wall was solved using a semi-analytical method based on the Trefftz functions. The 
experimental data obtained for the two types of enhanced heated surfaces with surface texture 

produced by vibration-assisted laser machining was compared with that recorded for the smooth 

surface. The results were presented as relationships between the heat transfer coefficient and the 
distance along the minichannel length and as boiling curves. In the subcooled boiling region, the heat 

7th European Thermal-Sciences Conference (Eurotherm2016) IOP Publishing
Journal of Physics: Conference Series 745 (2016) 032123 doi:10.1088/1742-6596/745/3/032123

6



 

 
 

 

 

 

transfer coefficient was relatively low. The values increased slightly with the distance from the 

minichannel inlet. In the saturated boiling region, the heat transfer coefficient was very high (with 

values up to a hundred times higher than those reported for the subcooled boiling region). The highest 

local values of the heat transfer coefficient were reported in the saturated boiling region for the plate 
with type 1 texture produced by vibration-assisted laser machining. 
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